Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ergodicity of the Cartesian product


Author: Elias G. Flytzanis
Journal: Trans. Amer. Math. Soc. 186 (1973), 171-176
MSC: Primary 28A65
DOI: https://doi.org/10.1090/S0002-9947-1973-0328021-6
MathSciNet review: 0328021
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {h_1}$ is an ergodic conservative transformation on a $ \sigma $-finite measure space and $ {h_2}$ is an ergodic measure preserving transformation on a finite measure space. We study the point spectrum properties of $ {h_1} \times {h_2}$. In particular we show $ {h_1} \times {h_2}$ is ergodic if and only if $ {h_1} \times {h_2}$ have no eigenvalues in common other than the eigenvalue 1. The conditions on $ {h_1},{h_2}$ stated above are in a sense the most general for the validity of this result.


References [Enhancements On Off] (What's this?)

  • [1] A. Beck, Eigenoperators of ergodic transformations, Trans. Amer. Math. Soc. 94 (1960), 118-129. MR 27 #2606. MR 0152631 (27:2606)
  • [2] R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560-564. MR 29 #2362. MR 0165071 (29:2362)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [4] N. A. Friedman, Introduction to ergodic theory, Van Nostrand, Princeton, N. J., 1970. MR 0435350 (55:8310)
  • [5] H. Fürstenberg, Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximations, Math. Systems Theory 1 (1967), 1-49. MR 35 #4369. MR 0213508 (35:4369)
  • [6] P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. Japan, Tokyo, 1956; reprint, Chelsea, New York, 1960. MR 20 #3958. MR 0111817 (22:2677)
  • [7] -, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [8] K. Jacobs, Lecture notes on ergodic theory. Vol. 1, Mathematisk Institut, Aarhus Universitet, Aarhus, 1962/63, pp. 1-207. MR 28 #3138. MR 0159922 (28:3138)
  • [9] B. Kronfeld, Ergodic transformations and independence, Glasnik Math. Ser. III 5(25) (1970), 221-226. MR 43 #2189. MR 0276442 (43:2189)
  • [10] S. Kakutani and W. Parry, Infinite measure preserving transformations with mixing, Bull. Amer. Math. Soc. 69 (1963), 752-756. MR 27 #3776. MR 0153815 (27:3776)
  • [11] D. S. Ornstein, On invariant measures, Bull. Amer. Math. Soc. 66 (1960), 297-300. MR 26 #3872. MR 0146350 (26:3872)
  • [12] W. Parry and F. Hahn, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179-190. MR 37 #6435. MR 0230877 (37:6435)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65

Retrieve articles in all journals with MSC: 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0328021-6
Keywords: Ergodic transformation, cartesian product, eigenoperation, Hilbert space, unitary operator
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society