Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Archimedean-like classes of lattice-ordered groups


Author: Jorge Martinez
Journal: Trans. Amer. Math. Soc. 186 (1973), 33-49
MSC: Primary 06A55
DOI: https://doi.org/10.1090/S0002-9947-1973-0332614-X
MathSciNet review: 0332614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ \mathcal{C}$ denotes a class of totally ordered groups closed under taking subgroups and quotients by o-homomorphisms. We study the following classes: (1) $ {\text{Res}}(\mathcal{C})$, the class of all lattice-ordered groups which are subdirect products of groups in $ \mathcal{C}$; (2) $ {\text{Hyp}}(\mathcal{C})$, the class of lattice-ordered groups in $ {\text{Res}}(\mathcal{C})$ having all their l-homomorphic images in $ {\text{Res}}(\mathcal{C})$; Para $ (\mathcal{C})$, the class of lattice-ordered groups having all their principal convex l-subgroups in $ {\text{Res}}(\mathcal{C})$. If $ \mathcal{C}$ is the class of archimedean totally ordered groups then Para $ (\mathcal{C})$ is the class of archimedean lattice-ordered groups, $ {\text{Res}}(\mathcal{C})$ is the class of subdirect products of reals, and $ {\text{Hyp}}(\mathcal{C})$ consists of all the hyper archimedean lattice-ordered groups.

We show that under an extra (mild) hypothesis, any given representable lattice-ordered group has a unique largest convex l-subgroup in $ {\text{Hyp}}(\mathcal{C})$; this socalled hyper- $ \mathcal{C}$-kernel is a characteristic subgroup. We consider several examples, and investigate properties of the hyper- $ \mathcal{C}$-kernels.

For any class $ \mathcal{C}$ as above we show that the free lattice-ordered group on a set X in the variety generated by $ \mathcal{C}$ is always in $ {\text{Res}}(\mathcal{C})$. We also prove that $ {\text{Res}}(\mathcal{C})$ has free products.


References [Enhancements On Off] (What's this?)

  • [1] R. Bleier, Dissertation, Tulane University, New Orleans, La., 1971.
  • [2] P. M. Cohn, Universal algebra, Harper & Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
  • [3] P. Conrad, A characterization of lattice-ordered groups by their convex l-subgroups, J. Austral. Math. Soc. 7 (1967), 145-159. MR 35 #5371. MR 0214521 (35:5371)
  • [4] -, Lattice-ordered groups, Tulane University, New Orleans, La., 1970.
  • [5] P. Conrad and D. McAlister, The completion of a lattice-ordered group, J. Austral. Math. Soc. 9 (1969), 182-208. MR 40 #2585. MR 0249340 (40:2585)
  • [6] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York; Addison-Wesley, Reading, Mass., 1963. MR 30 #2090. MR 0171864 (30:2090)
  • [7] J. Martinez, Free products of abelian l-groups, Czechoslovak Math. J. (to appear). MR 0371770 (51:7987)
  • [8] H. Neumann, Varieties of groups, Ergebnisse der Math. und ihrer Grenzgebiete, Band 37, Springer-Verlag, New York, 1967. MR 35 #6734. MR 0215899 (35:6734)
  • [9] E. C. Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187-199. MR 27 #3720. MR 0153759 (27:3720)
  • [10] S. Wolfenstein, Valeurs normales dans un groupe réticulé, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 44 (1968), 337-342. MR 38 #3201. MR 0234887 (38:3201)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0332614-X
Keywords: Closed class of o-groups, residually- $ \mathcal{C}$ l-groups, hyper- $ \mathcal{C}$ l-groups, para- $ \mathcal{C}$ l-groups, hyper- $ \mathcal{C}$ kernel, c-archimedean l-groups, $ \mathcal{C}$ radical
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society