Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The module decomposition of $ I(\bar A/A)$


Author: Klaus G. Fischer
Journal: Trans. Amer. Math. Soc. 186 (1973), 113-128
MSC: Primary 13H15; Secondary 14H20
DOI: https://doi.org/10.1090/S0002-9947-1973-0337947-9
MathSciNet review: 0337947
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A and B be scalar rings with B an A-algebra. The B-algebra $ {D^n}(B/A) = I(B/A)/{I^n}(B/A)$ is universal for n-truncated A-Taylor series on B. In this paper, we consider the $ \bar A$ module decomposition of $ {D^n}(\bar A/A)$ with a view to classifying the singularity A which is assumed to be the complete local ring of a point on an algebraic curve at a one-branch singularity. We assume that $ A/M = k < A$ and that k is algebraically closed with no assumption on the characteristic.

We show that $ {D^n}(\bar A/A) = I(\bar A/A)$ for n large and that the decomposition of $ I(\bar A/A)$ as a module over the P.I.D. $ \bar A$ is completely determined by the multiplicity sequence of A. The decomposition is displayed and a length formula for $ I(\bar A/A)$ developed. If B is another such ring, where $ \bar B = \bar A = k[[t]]$, we show that $ I(\bar A/A) \cong I(\bar B/B)$ as $ k[[t]]$ modules if and only if the multiplicity sequence of A is equal to the multiplicity sequence of B. If $ A < B < \bar A$, then $ I(\bar A/A) \cong I(\bar B/B)$ as $ \bar A = \bar B$ modules if and only if the Arf closure of A and B coincide. This is equivalent to the existence of an algebra isomorphism between $ I(\bar A/A)$ and $ I(\bar B/B)$.


References [Enhancements On Off] (What's this?)

  • [1] C. Arf, Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique, Proc. London Math. Soc. (2) 50 (1949), 256-287. MR 11, 205. MR 0031785 (11:205f)
  • [2] P, DuVal, Note on Cahit Arf's ``Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique,'' Proc. London Math. Soc. (2) 50 (1948), 288-294. MR 11, 206. MR 0031786 (11:206a)
  • [3] S. Ebey, The classification of singular points of algebraic curves, Trans. Amer. Math. Soc. 118 (1965), 454-471. MR 31 #1251. MR 0176983 (31:1251)
  • [4] N. Jacobson, Lectures in abstract algebra. Vol. II. Linear algebra, Van Nostrand, Princeton, N. J., 1953. MR 14, 837. MR 0053905 (14:837e)
  • [5] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685. MR 44 #203. MR 0282969 (44:203)
  • [6] K. Mount and O. E. Villamayor, Taylor series and higher derivations, Departmento de Matematicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Serie N$ ^{o}$. 18, Buenos Aires, 1969.
  • [7] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [8] Y. Nakai, High order derivations. I, Osaka J. Math. 7 (1970), 1-27. MR 41 #3404. MR 0263804 (41:8404)
  • [9] D. G. Northcott, The neighbourhoods of a local ring, J. London Math. Soc. 30 (1955), 360-375. MR 17, 86. MR 0071110 (17:86h)
  • [10] R. Walker, Algebraic curves, Princeton Math. Series, vol. 13, Princeton Univ. Press, Princeton, N. J., 1950. MR 11, 387. MR 0033083 (11:387e)
  • [11] O. Zariski and P. Samuel, Commutative algebra. Vols. I, II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958, I960. MR 19, 833; 22 #11006. MR 0090581 (19:833e)
  • [12] O. Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536. MR 31 #2243. MR 0177985 (31:2243)
  • [13] -, Studies in equisingularity. II. Equisingularity in codimension 1 (and characteristic zero), Amer. J. Math. 87 (1965), 972-1006. MR 33 #125. MR 0191898 (33:125)
  • [14] -, Studies in equisingularity. III. Saturation of local rings and equisingularity, Amer. J. Math. 90 (1968), 961-1023. MR 38 #5775. MR 0237493 (38:5775)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13H15, 14H20

Retrieve articles in all journals with MSC: 13H15, 14H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0337947-9
Keywords: Taylor series, blow-up, Arf ring, multiplicity sequence, decomposition of module of higher differentials
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society