Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A topology for a lattice-ordered group


Author: R. H. Redfield
Journal: Trans. Amer. Math. Soc. 187 (1974), 103-125
MSC: Primary 06A55
DOI: https://doi.org/10.1090/S0002-9947-1974-0327607-3
MathSciNet review: 0327607
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be an arbitrary lattice-ordered group. We define a topology on G, called the $ \mathcal{J}$-topology, which is a group and lattice topology for G and which is preserved by cardinal products. The $ \mathcal{J}$-topology is the interval topology on totally ordered groups and is discrete if and only if G is a lexico-sum of lexico-extensions of the integers. We derive necessary and sufficient conditions for the $ \mathcal{J}$-topology to be Hausdorff, and we investigate $ \mathcal{J}$-topology convergence.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Alo and O. Frink, Topologies of lattice products, Canad. J. Math. 18 (1966), 1004-1014. MR 35 #98. MR 0209195 (35:98)
  • [2] G. Birkhoff, A new interval topology for dually directed sets, Univ. Nac. Tucumán Rev. Ser. A 14 (1962), 325-331. MR 29 #3398. MR 0166120 (29:3398)
  • [3] -, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [4] P. Conrad, The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J. 7 (1960), 171-180. MR 22 #6854. MR 0116059 (22:6854)
  • [5] J. Ellis, Group topological convergence in completely distributive lattice-ordered groups, Doctoral Dissertation, Tulane University, New Orleans, La., 1968.
  • [6] E. E. Floyd, Boolean algebras with pathological order topologies, Pacific J. Math. 5 (1955), 687-689. MR 17, 450. MR 0073563 (17:450h)
  • [7] O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-582. MR 3, 313. MR 0006496 (3:313b)
  • [8] -, Ideals in partially ordered sets, Amer. Math. Monthly 61 (1954), 223-234. MR 15, 848. MR 0061575 (15:848a)
  • [9] C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408. MR 28 #1237. MR 0158009 (28:1237)
  • [10] F. K. Holley, The ideal and new interval topologies on l-groups, based on the doctoral dissertation, University of New Mexico, 1970 (preprint). MR 0335390 (49:172)
  • [11] T. Husain, Introduction to topological groups, Saunders, Philadelphia, Pa., 1966. MR 34 #278. MR 0200383 (34:278)
  • [12] J. Jakubik, Interval topology of an l-group, Colloq. Math. 11 (1963), 65-72. MR 28 #4041. MR 0160831 (28:4041)
  • [13] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., vol. 27, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 84. MR 0007093 (4:84f)
  • [14] R. Madell, Complete distributivity and $ \alpha $-convergence, Notices Amer. Math. Soc. 16 (1969), 239. Abstract #663-526.
  • [15] F. Papangelou, Order convergence and topological completion of commutative lattice groups, Math. Ann. 155 (1964), 81-107. MR 30 #4699. MR 0174498 (30:4699)
  • [16] -, Some considerations on convergence in abelian lattice groups, Pacific J. Math. 15 (1965), 1347-1364. MR 32 #7655. MR 0190242 (32:7655)
  • [17] R. H. Redfield, A topology for a lattice-ordered group, Doctoral Dissertation, Simon Fraser University, 1972.
  • [18] B. C. Rennie, Lattices, Proc. London Math. Soc. (2) 52 (1951), 386-400. MR 13, 7. MR 690634 (13:7c)
  • [19] B. Šmarda, Topologies in l-groups, Arch. Math. (Brno) 3 (1967), 69-81. MR 36 #6331. MR 0223283 (36:6331)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0327607-3
Keywords: Lattice-ordered group, topological group, topological lattice, $ \alpha $-convergence, lexico-sum, lexico-extension, cardinal product, interval topology
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society