Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Duality theories for metabelian Lie algebras


Author: Michael A. Gauger
Journal: Trans. Amer. Math. Soc. 187 (1974), 89-102
MSC: Primary 17B30
DOI: https://doi.org/10.1090/S0002-9947-1974-0342576-8
MathSciNet review: 0342576
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with duality theories for metabelian (2-step nilpotent) Lie algebras. A duality theory associates to each metabelian Lie algebra N with cod $ {N^2} = g$, another such algebra $ {N_D}$ satisfying $ {({N_D})_D} \cong N,{N_1} \cong {N_2}$ if and only if $ {({N_1})_D} \cong {({N_2})_D}$, and if $ \dim \,N = g + p$ then $ \dim \,{N_D} = g + (_2^g) - p$. The obvious benefit of such a theory lies in its reduction of the classification problem.


References [Enhancements On Off] (What's this?)

  • [1] M. Gauger, On the classification of metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973), 293-329. MR 0325719 (48:4066)
  • [2] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345. MR 0143793 (26:1345)
  • [3] G. Leger and E. Luks, On a duality for metabelian Lie algebras, J. Algebra 21 (1972), 266-270. MR 0330249 (48:8587)
  • [4] J. Scheuneman, Two-step nilpotent Lie algebras, J. Algebra 7 (1967), 152-159. MR 36 #225. MR 0217134 (36:225)
  • [5] G. Seligman, Algebraic groups, Yale Lecture Notes, 1964.
  • [6] J. Tits, Tabellen zu deneinfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Math., no. 40, Springer-Verlag, Berlin and New York, 1967. MR 36 #1575. MR 0218489 (36:1575)
  • [7] R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964), 1123-1127. MR 29 #4766. MR 0167493 (29:4766)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B30

Retrieve articles in all journals with MSC: 17B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0342576-8
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society