On Sylow -subgroups with no normal Abelian subgroups of rank , in finite fusion-simple groups

Author:
Anne R. Patterson

Journal:
Trans. Amer. Math. Soc. **187** (1974), 1-67

MSC:
Primary 20D20

DOI:
https://doi.org/10.1090/S0002-9947-1974-0342608-7

MathSciNet review:
0342608

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *T* be any finite 2-group which has a normal four-group but has no normal Abelian subgroup of rank 3, and assume *T* is not the dihedral group of order 8. If *T* is a Sylow 2-subgroup of a finite fusion-simple group *G*, it follows (Thompson) from Glauberman's -theorem that *T* has exactly one normal four-group, say *W*. This paper establishes what isomorphism types of *T* can so occur under the hypothesis that and the three nonidentity elements of *W* are not all *G*-conjugate. All *T* arrived at in this paper are known to so occur.

The reason for this hypothesis is that the similar situation for *T* with a normal four-group and no normal Abelian subgroup of rank 3, where *T* is a Sylow 2-subgroup of a finite simple group *G* but without the above hypothesis, had been analyzed earlier by the author (under her maiden name, MacWilliams; Trans. Amer. Math. Soc. **150** (1970), 345-408).

**[1]**J. Alperin,*Centralizers of Abelian normal subgroups of p-groups*, J. Algebra**1**(1964), 110-113. MR**29**#4800. MR**0167528 (29:4800)****[2]**J. Alperin, R. Brauer and D. Gorenstein,*Finite groups with quasi-dihedral and wreathed Sylow*2-*subgroups*, Trans. Amer. Math. Soc.**151**(1970), 1-261. MR**44**#1724. MR**0284499 (44:1724)****[3]**N. Blackburn,*Generalizations of certain elementary theorems on p-groups*, Proc. London Math. Soc. (3)**11**(1961), 1-22. MR**23**#A208. MR**0122876 (23:A208)****[4]**R. Brauer,*Some applications of the theory of blocks of characters of finite groups*. II, J. Algebra**1**(1964), 307-334. MR**30**#4836. MR**0174636 (30:4836)****[5]**R. Carter and P. Fong,*The Sylow*2-*subgroups of the finite classical groups*, J. Algebra**1**(1964), 139-151. MR**29**#3548. MR**0166271 (29:3548)****[6]**P. Chabot,*Groups whose Sylow*2-*subgroups have cyclic commutator groups*. I, II, J. Algebra**19**(1971), 21-30; J. Algebra**21**(1972), 312-320. MR**0308259 (46:7373)****[7]**W. Feit and J. Thompson,*Solvability of groups of odd order*, Pacific J. Math.**13**(1963), 775-1029. MR**29**#3538. MR**0166261 (29:3538)****[8]**G. Glauberman,*Central elements in core-free groups*, J. Algebra**4**(1966), 403-420. MR**34**#2681. MR**0202822 (34:2681)****[9]**D. Gorenstein and J. Walter,*The characterization of finite groups with dihedral Sylow*2-*subgroups*. I, II, III, J. Algebra**2**(1965), 85-151, 218-270, 334-393. MR**31**#1297a, b;**32**#7634. MR**0177032 (31:1297a)****[10]**M. Hall,*The theory of groups*, Macmillan, New York, 1959. MR**21**#1996. MR**0103215 (21:1996)****[11]**B. Huppert,*Endliche Gruppen*. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR**37**#302. MR**0224703 (37:302)****[12]**A. MacWilliams,*On*2-*groups with no normal Abelian subgroups of rank*3,*and their occurrence as Sylow*2-*subgroups of finite simple groups*, Trans. Amer. Math. Soc.**150**(1970), 345-408. MR**43**#2071. MR**0276324 (43:2071)****[13]**J. G. Thompson,*Nonsolvable finite groups all of whose local subgroups are solvable*, Bull. Amer. Math. Soc.**74**(1968), 383-437. MR**37**#6367. MR**0230809 (37:6367)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20D20

Retrieve articles in all journals with MSC: 20D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0342608-7

Keywords:
2-group,
Sylow 2-subgroup,
rank,
fusion-simple,
conjugate,
transfer homomorphism,
fusion

Article copyright:
© Copyright 1974
American Mathematical Society