Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ p$-adic hull of abelian groups


Author: A. Mader
Journal: Trans. Amer. Math. Soc. 187 (1974), 217-229
MSC: Primary 20K45
DOI: https://doi.org/10.1090/S0002-9947-1974-0352296-1
MathSciNet review: 0352296
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we define ``p-adic hull'' for p-reduced groups K. The p-adic hull $ {K^P}$ of K is a module over the ring P of p-adic integers containing K and satisfying certain additional properties. The notion is investigated and then used to prove some known and some new theorems on $ \operatorname{Ext}(K,T)$ and $ \operatorname{Hom}(K,T)$ for K torsion-free and T a reduced p-group.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219-234. MR 20 #6460. MR 0100024 (20:6460)
  • [2] H. Cartan and E. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [3] L. Fuchs, Infinite Abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 #333. MR 0255673 (41:333)
  • [4] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391. MR 21 #3481. MR 0104728 (21:3481)
  • [5] E. J. Howard, First and second category abelian groups with the n-adic topology, Pacific J. Math. 16 (1966), 323-329. MR 34 #7640. MR 0207826 (34:7640)
  • [6] I. Kaplansky, Infinite Abelian groups, rev. ed., University of Michigan Press, Ann Arbor, Mich., 1969. MR 38 #2208. MR 0233887 (38:2208)
  • [7] A. Mader, Extensions of Abelian groups, Studies on Abelian Groups (Sympos., Montpellier, 1967), Springer, Berlin, 1968, pp. 259-266. MR 43 #2079. MR 0276332 (43:2079)
  • [8] -, The group of extensions of a torsion group by a torsion free group, Arch. Math. (Basel) 20 (1969), 126-131. MR 40 #232. MR 0246963 (40:232)
  • [9] R. Nunke, On extensions of a torsion module, Pacific J. Math. 10 (1960), 597-606. MR 22 #5656. MR 0114838 (22:5656)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20K45

Retrieve articles in all journals with MSC: 20K45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0352296-1
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society