Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Smooth partitions of unity on manifolds


Author: John Lloyd
Journal: Trans. Amer. Math. Soc. 187 (1974), 249-259
MSC: Primary 58C20
DOI: https://doi.org/10.1090/S0002-9947-1974-0375374-X
MathSciNet review: 0375374
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues the study of the smoothness properties of (real) topological linear spaces. First, the smoothness results previously obtained about various important classes of locally convex spaces, such as Schwartz spaces, are improved. Then, following the ideas of Bonic and Frampton, we use these results to give sufficient conditions for the existence of smooth partitions of unity on manifolds modelled on topological linear spaces.


References [Enhancements On Off] (What's this?)

  • [1] E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 39 #1968. MR 0240621 (39:1968)
  • [2] V. I. Averbuh and O. G. Smoljanov, Differentiation theory in linear topological spaces, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 201-260 = Russian Math. Surveys 22 (1967), no. 6, 201-258. MR 36 #6933. MR 0223886 (36:6933)
  • [3] -, Different definitions of derivative in linear topological spaces, Uspehi Mat. Nauk 23 (1968), no. 4 (142), 67-116 = Russian Math. Surveys 23 (1968), no. 4, 67-113. MR 39 #7424. MR 0246118 (39:7424)
  • [4] Theodoros S. Bolis, Smooth partitions of unity in some infinitely dimensional manifolds (to appear).
  • [5] Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898. MR 33 #6647. MR 0198492 (33:6647)
  • [6] N. Bourbaki, Eléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 a 7), Actualités Sci. Indust., no. 1333, Hermann, Paris, 1967. MR 36 #2161. MR 0219078 (36:2161)
  • [7] J. Dieudonné, Foundations of modern analysis, Academic Press, New York, London, 1969. MR 0349288 (50:1782)
  • [8] Jean Dieudonné et Laurent Schwartz, La dualité dans les espaces $ (\mathcal{F})$ et $ (\mathcal{L}\mathcal{F})$, Ann. Inst. Fourier (Grenoble) 1 (1949/50), 61-101. MR 12, 417. MR 0038553 (12:417d)
  • [9] A. Frölicher and W. Bucher, Calculus in vector spaces without norm, Lecture Notes in Math., no. 30, Springer-Verlag, Berlin and New York, 1966. MR 35 #4723. MR 0213869 (35:4723)
  • [10] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
  • [11] Serge Lang, Introduction to differentiable manifolds, Interscience, New York, 1962. MR 27 #5192. MR 0155257 (27:5192)
  • [12] Michel Leduc, Jauges différentiables et partitions de l'unité, Séminaire Choquet, 1964/65, no. 12.
  • [13] John W. Lloyd, Inductive and projective limits of smooth topological vector spaces, Bull. Austral. Math. Soc. 6 (1972), 227-240. MR 45 #4099. MR 0295031 (45:4099)
  • [14] -, Differentiable mappings on topological vector spaces, Studia Math. 45 (1972), 147-160. MR 0333724 (48:12048)
  • [15] -, Two topics in the differential calculus on topological linear spaces, Ph.D. dissertation at the Australian National University.
  • [16] Jean-Paul Penot, Calcul différentiel dans les espaces vectoriels topologiques, Studia Math. 47 (1973), 1-23. MR 0336334 (49:1109)
  • [17] Daniel J. Randtke, A structure theorem for Schwartz spaces, Math. Ann. 201 (1973), 171-176. MR 0326347 (48:4691)
  • [18] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982. MR 10, 204. MR 0026802 (10:204c)
  • [19] S. Yamamuro, Lecture notes on differential calculus, 1971 (mimeographed).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58C20

Retrieve articles in all journals with MSC: 58C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0375374-X
Keywords: Smooth partitions of unity, Schwartz space, nuclear space, Fréchet derivative, Hadamard derivative
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society