Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak compactness in the order dual of a vector lattice


Author: Owen Burkinshaw
Journal: Trans. Amer. Math. Soc. 187 (1974), 183-201
MSC: Primary 46A40
DOI: https://doi.org/10.1090/S0002-9947-1974-0394098-6
MathSciNet review: 0394098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence $ \{ {x_n}\} $ in a vector lattice E will be called an l'-sequence if there exists an x in E such that $ \Sigma _{k = 1}^n\vert{x_k}\vert \leq x$ for all n. Denote the order dual of E by $ {E^b}$. For a set $ A \subset {E^b}$, let $ {\left\Vert \cdot \right\Vert _{{A^ \circ }}}$ denote the Minkowski functional on E defined by its polar $ {A^ \circ }$ in E. A set $ A \subset {E^b}$ will be called equi-l'-continuous on E if $ \lim {\left\Vert {{x_n}} \right\Vert _{{A^ \circ }}} = 0$ for each l'-sequence $ \{ {x_n}\} $ in E.

The main objective of this paper will be to characterize compactness in $ {E^b}$ in terms of the order structure on E and $ {E^b}$. In particular, the relationship of equi-l'-continuity to compactness is studied. §2 extends to $ {E^{\sigma c}}$ the results in Kaplan [8] on vague compactness in $ {E^C}$. Then this is used to study vague convergence of sequences in $ {E^b}$.


References [Enhancements On Off] (What's this?)

  • [1] T. Ando, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395-404. MR 25 #1255. MR 0137806 (25:1255)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #3302. MR 0117523 (22:8302)
  • [3] P. Ganssler, Compactness and sequential compactness in spaces of measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 124-146. MR 44 #793. MR 0283562 (44:793)
  • [4] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [5] S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90. MR 19, 868. MR 0090774 (19:868c)
  • [6] S. Kaplan, The second dual of the space of continuous functions. II, Trans. Amer. Math. Soc. 93 (1959), 329-350. MR 22 #2888. MR 0112030 (22:2888)
  • [7] -, Closure properties of $ C(X)$ in its second dual, Proc. Amer. Math. Soc. 17 (1966), 491-406. MR 32 #6260.
  • [8] -, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259-298. MR 41 #5932. MR 0261317 (41:5932)
  • [9] H. Nakano, Linear lattices, Wayne State Univ. Press, Detroit, Mich., 1966. MR 33 #3084. MR 0194878 (33:3084)
  • [10] A. L. Persessini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 0227731 (37:3315)
  • [11] H. H. Schaefer, Weak convergence of measures, Math. Ann. 193 (1971), 57-64. MR 44 #5759. MR 0288562 (44:5759)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A40

Retrieve articles in all journals with MSC: 46A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0394098-6
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society