Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On proper homotopy theory for noncompact $ 3$-manifolds


Authors: E. M. Brown and T. W. Tucker
Journal: Trans. Amer. Math. Soc. 188 (1974), 105-126
MSC: Primary 57A65
DOI: https://doi.org/10.1090/S0002-9947-1974-0334225-X
MathSciNet review: 0334225
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Proper homotopy groups analogous to the usual homotopy groups are defined. They are used to prove, modulo the Poincaré conjecture, that a noncompact 3-manifold having the proper homotopy type of a closed product $ F \times [0,1]$ or a half-open product $ F \times [0,1)$ where F is a 2-manifold is actually homeomorphic to $ F \times [0,1]$ or $ F \times [0,1)$, respectively. By defining a concept for noncompact manifolds similar to boundary-irreducibility, a well-known result of Waldhausen concerning homotopy and homeomorphism type of compact 3-manifolds is extended to the noncompact case.


References [Enhancements On Off] (What's this?)

  • [1] R. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816. MR 0061377 (15:816d)
  • [2] W. Browder, J. Levine and G. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028. MR 32 #6973. MR 0189046 (32:6473)
  • [3] E. M. Brown, The Hauptvermutung for 3-complexes, Trans. Amer. Math. Soc. 144 (1969), 173-196. MR 40 #4956. MR 0251729 (40:4956)
  • [4] -, On proper homotopy type, Lecture Notes in Math., vol. 375, Springer-Verlag, Berlin and New York.
  • [5] -, Unknotting in $ {M^2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505. MR 0198482 (33:6640)
  • [6] C. H. Edwards, Jr., Open 3-manifolds which are simply-connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391-395. MR 27 #732. MR 0150745 (27:732)
  • [7] H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), 692-713. MR 1545233
  • [8] L. S. Husch and T. M. Price, Finding a boundary for a 3-manifold, Ann. of Math. (2) 91 (1970), 223-235. MR 41 #9269. MR 0264678 (41:9269)
  • [9] W. Heil, On $ {P^2}$-irreducible 3-manifold, Bull. Amer. Math. Soc. 75 (1969) 772-775. MR 40 #4958. MR 0251731 (40:4958)
  • [10] D. R. McMillan, Jr., Some contractible open 3-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373-382. MR 25 #561. MR 0137105 (25:561)
  • [11] E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159-170. MR 15 #889. MR 0061822 (15:889g)
  • [12] L. C. Siebenmann, Infinite simple homotopy types, Indag. Math. 32 (1970), 479-495. MR 0287542 (44:4746)
  • [13] -, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201-227. MR 39 #7605. MR 0246301 (39:7605)
  • [14] -, The obstruction to finding a boundary for an open manifold of dimension greater than 5, Thesis, Princeton University, Princeton, N. J., 1965.
  • [15] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)
  • [16] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-327.
  • [17] E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Etudes Sci., Paris, 1963. (mimeographed)
  • [18] E. M. Brown and R. H. Crowell, Deformation retractions of 3-manifolds into their boundaries, Ann. of Math. (2) 82 (1965), 445-458. MR 31 #6236. MR 0182012 (31:6236)
  • [19] M. S. Brown, Constructing isotopies in noncompact 3-manifolds, Bull. Amer. Math. Soc. 78 (1972), 461-464. MR 0298667 (45:7717)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A65

Retrieve articles in all journals with MSC: 57A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0334225-X
Keywords: Proper map, end, proper homotopy groups, incompressible surface, $ {p^2}$-irreducible, boundary-irreducible, end-irreducible
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society