RECAPTURING H^2-FUNCTIONS ON A POLYDISC

BY

D. J. PATIL

ABSTRACT. Let U^2 be the unit polydisc and T^2 its distinguished boundary. If $E \subset T^2$ is a set of positive measure and the restriction to E of a function f in $H^2(U^2)$ is given then an algorithm to recapture f is developed.

Introduction. Let U be the open unit disc in the complex plane and T its boundary. Let f be holomorphic in the unit polydisc $U^2 = U \times U$; then $f(z) = \sum c(n)z^n$, $z = (z_1, z_2) \in U^2$, $n = (n_1, n_2) \in \mathbb{Z}^2_+$. The function f is in H^2 if and only if $\sum |c(n)|^2 < \infty$ [2, p. 50]. The functions f in H^2 can be identified with the boundary value functions on the distinguished boundary $T^2 = T \times T$ of U^2 and these boundary value functions are precisely those $f \in L^2(T^2)$ whose Fourier coefficients $\hat{f}(n_1, n_2)$ are zero if either $n_1 < 0$ or $n_2 < 0$. It is known that if a nonzero f is in H^2 then $\log|f|$ is in $L^1(T^2)$ and hence if $f = 0$ on a subset E of T^2 of positive measure then f is the zero function. It follows that the restriction to such a set E of a function f in H^2 determines f uniquely. Following the methods in [1], we give a constructive algorithm to recapture the function f from its values on E. The construction is in two steps. From the knowledge of f on E, the first step obtains f on $F \times T$ where F is some subset of T of positive measure. The second step is the 'conjugate' of the first and starting with f on $F \times T$ we recover f on the whole of $T \times T$.

The arrangement of the paper is as follows. After defining the notations, we prove some lemmas leading to Theorem 1 which gives the first step in recapturing f. We then discuss how the second step is a corollary of the first. This is followed by Theorem 2 which makes the algorithm more explicit.

Notations. In the following H^2 will stand for $H^2(T^2)$. By L^2 and L^∞ will be meant $L^2(T^2)$ and $L^\infty(T^2)$ respectively. The subspace L^2_+ (L^∞_+) will consist of those f in L^2 (L^∞) whose Fourier coefficients vanish in the lower half plane, thus, $L^2_+ = \{ f \in L^2: \hat{f}(n_1, n_2) = 0 \text{ for all } n_2 < 0 \}$. The orthogonal projection of L^2 onto L^2_+ will be denoted by P. The Toeplitz operator T corresponding to $\phi \in L^\infty$ is defined by $T\phi = P(\phi)$, $f \in L^2_+$. If $f \in L^2_+$ we may consider f as an H^2-function on T with values in $L^2(T)$: $f(\theta_1, \theta_2) = \sum_n \hat{f}(\theta_1, \theta_2) e^{in\theta_2}$. The natural...
extension of this \(f \) to \(\overline{U} \) will also be denoted by \(f \); then for \(z_2 \in U \), \(f(z_2) = \sum_{n \geq 0} f_n(\theta_1)z_2^n \). Such functions \(f \) are holomorphic \(L^2(T) \)-valued functions on \(U \) and the relation \(f(r_2e^{i\theta_2}) \to f(\theta_1, \theta_2) \) as \(r_2 \to 1 \) holds for a.e. pointwise convergence and also for mean convergence [3, p. 186]. Thus the functions \(f(\theta_1, \theta_2) \) and \(f(z_2) \) above determine each other. The (normalized) Haar measures on \(T \) and \(T^2 \) will be denoted by \(\mu_1 \) and \(\mu_2 \) respectively, and when there is no risk of confusion \(d\mu_1(\theta_1) \) will be shortened to \(d\theta_1 \) etc. For \(z \in U \), \(\theta \in T \), let \(K(z, \theta) = (e^{i\theta} + z)/(e^{i\theta} - z) \) and \(P = \text{Re} \ K \).

Lemma 1. Let \(E \subset T^2 \), \(m_2(E) > 0 \). For \(\lambda > 0 \) and \((z_1, z_2) \in U^2 \) define

\[
t_\lambda(z_1, z_2) = \exp \left\{ \frac{\lambda}{2} \log(1 + \lambda) \int_E P(z_1, \theta_1)K(z_2, \theta_2) \, d\theta_1 \, d\theta_2 \right\}.
\]

Then we have the following:

(a) For all \((z_1, z_2) \in U^2 \), \(1 \leq |t_\lambda(z_1, z_2)| \leq \sqrt{1 + \lambda} \).

(b) There exists a set \(\Lambda \subset T \) with \(m_1(\Lambda) = 1 \) such that for every \(\theta_1 \in \Lambda \) and for every \(z_2 \in U \), the limit

\[
t_\lambda(\theta_1, z_2) = \lim_{r_2 \to 1} t_\lambda(r_1e^{i\theta_1}, z_2)
\]

exists and for each \(\theta_1 \in \Lambda \), the function \(t_\lambda(\theta_1, \cdot) \) is holomorphic in \(U \).

(c) For each \(\theta_1 \in \Lambda \), the limit

\[
t_\lambda(\theta_1, \theta_2) = \lim_{r_2 \to 1} t_\lambda(\theta_1, r_2e^{i\theta_2})
\]

exists for almost all \(\theta_2 \) in \(T \), and hence \(t_\lambda(\theta_1, \theta_2) \) is defined almost everywhere in \(T^2 \) and is in \(L^\infty \).

(d) For almost all \((\theta_1, \theta_2) \) in \(T^2 \),

\[
|t_\lambda(\theta_1, \theta_2)|^2 = 1 + \lambda \chi_E(\theta_1, \theta_2).
\]

Proof. (a) holds since \(|t_\lambda(z_1, z_2)| \) is the exponential of the Poisson integral of \(\frac{\lambda}{2} \log(1 + \lambda) \chi_E \).

(b) For \(z_2 \in U \) and \(\theta_1 \in T \), letting

\[
\mathcal{B}(\theta_1, z_2) = \int_T \chi_E(\theta_1, \theta_2)K(z_2, \theta_2) \, d\theta_2,
\]

we see that \(|\mathcal{B}(\theta_1, z_2)| \leq 2/(1 - |z_2|) \), for all \(\theta_1 \in T \) and hence by Fatou's theorem the integral

\[
\int_E P(r_1e^{i\alpha_1}, \theta_1)K(z_2, \theta_2) \, d\theta_1 \, d\theta_2 = \int_T P(r_1e^{i\alpha_1}, \theta_1)\mathcal{B}(\theta_1, z_2) \, d\theta_1
\]

converges to \(\mathcal{B}(\alpha_1, z_2) \) a.e. \((\alpha_1) \) as \(r_1 \to 1 \). Therefore
Recapturing H^2-functions on a polydisc

(1) \[t^*_\lambda(r_1 e^{i\theta_1}, z_2) \rightarrow \exp \{ \frac{1}{2} \log (1 + \lambda) \bar{\beta}(\theta_1, z_2) \} \]
a.e. (θ_1). The set of measure 1 where this convergence takes place depends on z_2. To see that there is a set A of measure 1 such that for all $\theta_1 \in A$ and for all $z_2 \in U$, (1) holds it suffices to observe that for a fixed α_1, the family \[\{ F_{r_1} : 0 < r_1 < 1 \} \]
is equicontinuous on compact subsets of U. A standard argument such as the one in the proof of (5.16) in [5, p. 327] now proves the existence of the set A.

(c) For each $\theta_1 \in A$, $t^*_\lambda(\theta_1, \cdot)$ is a bounded holomorphic function on U and hence by Fatou’s theorem $t^*_\lambda(\theta_1, z_2)$ has a limit—say $t(\theta_1, \theta_2)$—as $r_2 \rightarrow 1$, a.e. (θ_2). Since $t^*_\lambda(\theta_1, \theta_2)$ is a repeated limit of continuous functions, its domain Δ is a measurable set in T^2 and since almost every θ_1-section of Δ has measure 1, we must have that $m_2(\Delta) = 1$.

(d) We have for almost every $(\theta_1, \theta_2) \in T^2$,

\[|t^*_\lambda(\theta_1, \theta_2)|^2 = \lim_{r_2 \rightarrow 1} \exp \left\{ \log (1 + \lambda) \int_{T^2} \beta(\theta_1, \alpha_2) P(r_2 e^{i\theta_2}, \alpha_2) d\alpha_2 \right\} = \exp \{ \log (1 + \lambda) \beta(\theta_1, \theta_2) \} = 1 + \lambda \beta(\theta_1, \theta_2). \]

Lemma 2. Let $E \subset T^2$, $m_2(E) > 0$. Let S be the Toeplitz operator on L^2_+ corresponding to the characteristic function χ_E of the set E. If t^*_λ is as in Lemma 1 and $s^*_\lambda = 1/t^*_\lambda$, then $(1 + \lambda S) = T_{s^*_\lambda} T_{t^*_\lambda}$.

Proof. We observe that $s^*_\lambda \in L^\infty_+$. The rest of the proof is similar to those of Lemmas 1, 2 in [1].

Lemma 3. Let $s(\theta_1, \theta_2) = \sum_{n \geq 0} s_n(\theta_1) e^{in\theta_2}$ be in L^∞_+ and let $s(\theta_1, z_2) = \sum_{n \geq 0} s_n(\theta_1) z_2^n$, $\theta_1 \in T$, $z_2 \in U$. Define for $(\theta_1, \theta_2) \in T^2$ and $z \in U$,

\[e_z^{(j)}(\theta_1, \theta_2) = (1 - e^{i\theta_j})^{-1}, \quad j = 1, 2. \]

Then for $z_1, z_2 \in U$, $e_z^{(1)} e_z^{(2)}$ is in H^2 (and so in L^2) and

\[T_z (e_z^{(1)} e_z^{(2)})(\theta_1, \theta_2) = \bar{s}(\theta_1, z_2) (e_z^{(1)} e_z^{(2)})(\theta_1, \theta_2). \]

Proof. The equality follows by checking that the inner products of both sides with $\exp(i m_1 \theta_1 + i m_2 \theta_2)$, are the same for every integer m_1 and every nonnegative integer m_2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 4. Let $E \subset T^2$ with $m_2(E) > 0$. Let for each $\theta_1 \in T$, $E(\theta_1) = \{\theta_2 \in T : (\theta_1, \theta_2) \in E\}$ and let, for each $\delta > 0$, $F(\delta) = \{\theta_1 \in T : m_1(E(\theta_1)) > \delta\}$. Then there exist $\delta_1 > 0$, $\delta_2 > 0$ such that $m_1(F(\delta_2)) > \delta_1$.

Proof. Observe that as $n \to \infty$,
\[
\int_{F(1/n)} m_1(E(\theta_1)) d\theta_1 \uparrow \int_T m_1(E(\theta_1)) d\theta_1 = m_2(E),
\]
and hence, if $0 < \delta_1 < m_2(E)$, there exists N such that
\[
\delta_1 < \int_{F(1/N)} m_1(E(\theta_1)) d\theta_1 \leq m_1(F(1/N)).
\]
Now take $\delta_2 = 1/N$.

Theorem 1. Let $E \subset T^2$, $m_2(E) > 0$. Choose δ_1, δ_2 as in Lemma 4 and denote $F(\delta_2)$ by F. Let M be the operator defined by
\[
(Mf)(\theta_1, \theta_2) = \chi_F(\theta_1)(\theta_1, \theta_2), \quad f \in L^2, (\theta_1, \theta_2) \in T^2.
\]
Suppose that S is as in Lemma 2. Then for every $f \in H^2$,
\[
\lim_{\lambda \to \infty} \lambda M(I + \lambda S)^{-1} Sf = Mf.
\]
Proof. Since $M(I - \lambda(I + \lambda S)^{-1} S) = M(I + \lambda S)^{-1}$, and the set $\{e_n^{(1)} e_n^{(2)} : z_1, z_2 \in U\}$ is fundamental in H^2, the theorem will be proved if the following are verified: (i) $\sup_\lambda \|M(I + \lambda S)^{-1}\| < \infty$, and (ii) for all $z_1, z_2 \in U$,
\[
M(I + \lambda S)^{-1} e_n^{(1)} e_n^{(2)} \to 0, \quad \lambda \to \infty.
\]
By Lemma 1(a), $|s_\lambda(\theta_1, \theta_2)| \leq 1$, a.e. and therefore $\|T_s^\lambda\| = \|T_{s_\lambda}\| \leq 1$. Also trivially, $\|M\| \leq 1$ and hence in view of Lemma 2, $\|M(I + \lambda S)^{-1}\| = \|MT_{s_\lambda} T_{s_\lambda}\| \leq 1$. This proves (i).

To check (ii), note that for $\theta_1 \in F$, using the notation in the proof of Lemma 1(b),
\[
\Re B(\theta_1, z_2) = \int_{E(\theta_1)} p(z_2, \theta_2) d\theta_2 \geq \frac{1 - |z_2|}{1 + |z_2|},
\]
and hence for almost all $\theta_1 \in F$,
\[
|s_\lambda(\theta_1, z_2)| \leq (1 + \lambda)^{-p} \quad z_2 \in U
\]
where $p = \delta_2 (1 - |z_2|)/2(1 + |z_2|) > 0$. Now using Lemma 3, we have
\[
M(I + \lambda S)^{-1}(e_n^{(1)} e_n^{(2)})(\theta_1, \theta_2) = \chi_F(\theta_1)s_\lambda(\theta_1, \theta_2) s_\lambda(\theta_1, z_2) e_n^{(1)} e_n^{(2)}(\theta_1, \theta_2),
\]
and hence
\[\|M(I + \lambda S)^{-1}(e^{(1)}_z e^{(2)}_z)\|_2 \leq (1 + \lambda)^{-\theta} \|e^{(1)}_z e^{(2)}_z\|_2. \]

This last expression tends to zero as \(\lambda \to \infty \) and (ii) is verified.

Discussion. The limit relation \(\lambda M(I + \lambda S)^{-1} Sf \to Mf \) of Theorem 1 provides the first step in recapturing \(f \) from its values on \(E \). The knowledge of \(f \) on \(E \) yields \(Sf \) and \((I + \lambda S)^{-1} \) is obtained in terms of \(s_\lambda \) which depends only on the set \(E \). Thus \(\lambda M(I + \lambda S)^{-1} Sf \) can be computed and the limit as \(\lambda \to \infty \) gives \(Mf \), i.e. values of \(f \) on \(F \times T \). The second step of going from \(F \times T \) to \(T \times T \) now follows easily. We proceed basically as in the first step, but we interchange the roles of the \(\theta_1 \)- and \(\theta_2 \)-coordinates and employ the appropriate substitute for \(L^2 \).

The original set \(E \) is now replaced by \(E' = F \times T \). Recalling the relationship that \(F \) bears to \(E \) (Lemma 4), we see that the set \(F' \) which corresponds in a similar way (but with \(\theta_1, \theta_2 \) interchanged) to \(E' \) can be chosen to be \(T \) itself! Thus a theorem such as Theorem 1 with suitable changes will lead us to \(f \) on \(T \times F' = T \times T \). This is the sought-for second step, and the algorithm for recapturing \(f \) is complete.

The above algorithm recaptures the boundary values of \(f \) from its values on \(E \). It is sometimes convenient to have a formula which gives the values of \(f \) inside \(U \) directly. In the following theorem such a formula is obtained.

Theorem 2. Let the hypotheses and the notations be as in Theorem 1.

(a) If for \(\lambda > 0 \) and \(z_1, z_2 \in U \),
\[f_\lambda(z_1, z_2) = \frac{\lambda}{(2\pi i)^2} \int_E \frac{f(w_1', w_2') s_\lambda(w_1', w_2') s_\lambda(w_1, z_2)x_{z_1}(w_1)}{(w_1 - z_1)(w_2 - z_2)} \, dw_1 dw_2, \]
then as \(\lambda \to \infty \), \(f_\lambda \) converges in \(H^2 \) to some \(\phi \) and a fortiori uniformly on compact subsets of \(U^2 \).

(b) If for \(\lambda > 0 \) and \(z_1 \in U \),
\[b_\lambda(z_1) = \exp \left\{ -\frac{1}{2} \log (1 + \lambda) \int_P K(z_1, \theta_1) \, d\theta_1 \right\}, \]
and \(\phi \) is as in (a) above then for each \((z_1, z_2) \in U^2 \),
\[f(z_1, z_2) = \lim_{\lambda \to \infty} \lim_{r \to 1} \frac{\lambda}{2\pi i} b_\lambda(z_1) \int_{c_r} \frac{\phi(w_1, z_2) \overline{b_\lambda(w_1)}}{w_1 - z_1} \, dw_1, \]
where \(c_r \) is the circle \(|w_1| = r \) and \(|z_1| < r < 1 \).

Proof. (a) By Theorem 1, we have that as \(\lambda \to \infty, \lambda M(I + \lambda S)^{-1} Sf \to Mf \). Taking the inner product with \(e^{(1)}_z e^{(2)}_z, z_1, z_2 \in U \), we get
We will prove that the first member of (2) equals \(f_\lambda(z_1, z_2) \) and hence if the second member of (2) is denoted by \(\phi(z_1, z_2) \) the proof of (a) will be complete.

Since \(M \) is the multiplication by \(\chi_{E'}(\theta_1) \), a function of \(\theta_1 \) only, \(M \) commutes with \(S \) and therefore with \((I + \lambda S)^{-1}\). Thus

\[
(M(I + \lambda S)^{-1}Sf, e^{(1)}_{z_1}e^{(2)}_{z_2}) = (SMf, (I + \lambda S)^{-1}e^{(1)}_{z_1}e^{(2)}_{z_2} = (Mf, (I + \lambda S)^{-1}e^{(1)}_{z_1}e^{(2)}_{z_2}).
\]

Using Lemmas 2 and 3 to write the expressions for \((I + \lambda S)^{-1}e^{(1)}_{z_1}e^{(2)}_{z_2}\), we see that the left member of (2) is in fact \(f_\lambda(z_1, z_2) \).

(b) From the proof in (a), we see that \(\phi(z_1, z_2) = (Mf, e^{(1)}_{z_1}e^{(2)}_{z_2}) \) and hence

\[
\phi(z_1, z_2) = \frac{1}{(2\pi)^2} \int_{F \times T} \frac{f(w_1, w_2)}{(w_1 - z_1)(w_2 - z_2)} \, dw_1 \, dw_2.
\]

Let us now define \(L^2_\sim \) to be the subspace \(f / \in L^2_\sim: \hat{f}(m, n) = 0 \) for all \(m < 0 \) via \(\hat{P} \) the orthogonal projection of \(L^2_\sim \) onto \(L^2_\sim \), \(S \) the Toeplitz operator on \(L^2_\sim \) corresponding to the function \(\chi_{E'} \), where \(E' = F \times T \), i.e. \(\hat{S}f = \hat{P}(\chi_{E'}f), f \in L^2_\sim \), and \(\sigma_\lambda, b_\lambda \) to be

\[
\sigma_\lambda(z_1, z_2) = \exp \left\{ -\frac{1}{2} \log \left(1 + \lambda \right) \int_{E'} K(\theta, z_1)P(\theta, z_2) \, d\theta_1 \, d\theta_2 \right\},
\]

\[
b_\lambda(z_1) = \exp \left\{ -\frac{1}{2} \log \left(1 + \lambda \right) \int_{E} K(\theta, z_1) \, d\theta \right\},
\]

where \(\lambda > 0 \) and \(z_1, z_2 \in U \). Then for all \(z_1, z_2 \in U \), \(\sigma_\lambda(z_1, z_2) = b_\lambda(z_1) \) and as in Theorem 1 we will get, for every \(f \in H^2 \), \(\lambda \hat{M}(I + \lambda S)^{-1}f \rightarrow \hat{M}(\lambda \rightarrow \infty) \), where \(\hat{M} \) is the multiplication by \(\chi_{E'}(\theta_2) \), \(F' \) corresponding to \(E' \) according to Lemma 4 but with roles of \(\theta_1, \theta_2 \) reversed. However, since \(E' = F \times T \), we can take \(F' = T \) and so for \(f \in H^2 \), \(\lambda(I + \lambda S)^{-1}f \rightarrow f \). If, in this last relation, we take the inner product with \(e^{(1)}_{z_1}e^{(2)}_{z_2} \), then as \(\lambda \rightarrow \infty \),

\[
(\lambda(I + \lambda S)^{-1}f, e^{(1)}_{z_1}e^{(2)}_{z_2}) \rightarrow (f, e^{(1)}_{z_1}e^{(2)}_{z_2}) = (f, e^{(2)}_{z_1}e^{(1)}_{z_2}) = (f, \phi_\lambda(z_1, z_2)).
\]

Now noting that \(\hat{P}(\chi_{E'}f) = \phi_\lambda \), we see that

\[
((I + \lambda S)^{-1}f, e^{(1)}_{z_1}e^{(2)}_{z_2}) = (\hat{S}f, (I + \lambda S)^{-1}e^{(1)}_{z_1}e^{(2)}_{z_2}) = (\phi, b_\lambda e^{(1)}_{z_1}e^{(2)}_{z_2})b_\lambda(z_1).
\]
In the last step we used results similar to Lemmas 2 and 3 for \((I + \lambda S)^{-1}\). From (3) it now follows that as \(\lambda \to \infty\),
\[
\lambda\langle \phi, b_k e^{(1)} z_1 z_2 \rangle \to f(z_1, z_2).
\]
It is easy to see that \(\langle \phi, b_k e^{(1)} z_1 z_2 \rangle\) equals the inner product in \(H^2(U^1)\) of \(\phi(\cdot, z_2)\) with \(b_k e^{(1)} z_1 \). The proof is finished by observing that if \(u, v \in H^2(U^1)\) and \(u_e^{i\theta} = u(re^{i\theta})\) and \(v_r\) is similarly defined then the product \(\langle u, v \rangle_{e^{(1)}}\) is the limit as \(r \to 1\) of
\[
\frac{1}{2\pi i} \oint_{C_r} \frac{u(w)\overline{v}(w)}{w-z} \, dw.
\]

Remarks. (1) An alternative proof of a part of the one-variable theorem (Theorem I of [1] as regards the convergence on compact sets) has been suggested by Wainger (see Appendix B of [4]). This proof depends on the following statement which is true if \(n = 1\): To each nonnegative function \(\psi \in L^\infty(T^n)\) there is \(f \in H^\infty(U^n)\) such that \(|f| = \psi\) a.e. The statement is false for \(n > 1\) [2, p. 54ff]. Moreover for \(n > 1\) even when such a function \(f\) exists an explicit formula for \(f\) does not seem to be known. It would thus appear that a proof on the lines suggested by Wainger is not possible for \(n > 1\) and that recourse to the techniques such as the ones used in the present work is necessary.

(2) The Theorem 1 above can easily be generalized to functions in \(H^2(T^n)\) with \(n > 2\). The algorithm to recapture the function takes \(n\) steps and the generalization does not need any new ideas.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201