Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Uniformly distributed sequences in locally compact groups. II


Author: Leonora Benzinger
Journal: Trans. Amer. Math. Soc. 188 (1974), 167-178
MSC: Primary 22D05; Secondary 10K99
DOI: https://doi.org/10.1090/S0002-9947-74-99944-9
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the following question. When is there a compactification $ {G_0}$ of a locally compact group G (recall that a compact group $ {G_0}$ is a compactification of G if there is a continuous homomorphism $ \phi :G \to {G_0}$ so that $ \phi (G)$ is dense in G) with continuous homomorphism $ \phi :G \to {G_0}$ with the property that $ \{ {g_\nu }\} $ is uniformly distributed in G if and only if $ \{ \phi ({g_\nu })\} $ is uniformly distributed in $ {G_0}$? Such a compactification $ {G_0}$ is called a D-compactification of G. We obtain a solution to this problem and thereby generalize to locally compact groups some results of Berg, Rajagopalan, and Rubel concerning D-compactifications of locally compact abelian groups.


References [Enhancements On Off] (What's this?)

  • [1] L. Benzinger, Uniformly distributed sequences in locally compact groups. I, Trans. Amer. Math. Soc. 188 (1974), 149-165. MR 0333063 (48:11388)
  • [2] I. D. Berg, M. Rajagopalan and L. A. Rubel, Uniform distribution on locally compact Abelian groups, Trans. Amer. Math. Soc. 133 (1968), 436-446. MR 37 #3279. MR 0227695 (37:3279)
  • [3] E. Hewitt and K. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [4] -, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970. MR 41 #7378. MR 0262773 (41:7378)
  • [5] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [6] M. A. Naimark, Normed rings, 2nd rev. ed., ``Nauka", Moscow, 1968; English transl., Wolters-Noordhoff, 1970. MR 0355602 (50:8076)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D05, 10K99

Retrieve articles in all journals with MSC: 22D05, 10K99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-74-99944-9
Keywords: Locally compact group, uniform distribution, compactification, D-compactification
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society