Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Canonical forms and principal systems for general disconjugate equations


Author: William F. Trench
Journal: Trans. Amer. Math. Soc. 189 (1974), 319-327
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9947-1974-0330632-X
MathSciNet review: 0330632
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the disconjugate equation (1) $ Lx \equiv (1/{\beta _n})(d/dt) \cdot (1/{\beta _{n - 1}}) \cdots (d/dt)(1/{\beta _1})(d/dt)(x/{\beta _0}) = 0$ , a $ < t < b$, where $ {\beta _i} > 0$, and (2) $ {\beta _i} \in C(a,b)$, can be written in essentially unique canonical forms so that $ {\smallint ^b}{\beta _i}dt = \infty ({\smallint _a}{\beta _i}dt = \infty )$ for $ 1 \leq i \leq n - 1$. From this it follows easily that (1) has solutions $ {x_1}, \ldots ,{x_n}$ which are positive in (a, b) near $ b(a)$ and satisfy $ {\lim _{t \to b}} - {x_i}(t)/{x_j}(t) = 0({\lim _{t \to a}} + {x_i}(t)/{x_j}(t) = \infty )$ for $ 1 \leq i < j \leq n$. Necessary and sufficient conditions are given for (1) to have solutions $ {y_1}, \ldots ,{y_n}$ such that $ {\lim _{t \to b}} - {y_i}(t)/{y_j}(t) = {\lim _{t \to a}} + {y_j}(t)/{y_i}(t) = 0$ for $ 1 \leq i < j \leq n$. Using different methods, P. Hartman, A. Yu. Levin and D. Willett have investigated the existence of fundamental systems for (1) with these properties under assumptions which imply the stronger condition $ (2'){\beta _i} \in {C^{(n - i)}}(a,b)$.


References [Enhancements On Off] (What's this?)

  • [1] W. A. Coppel, Disconjugacy, Lecture Notes in Math., vol. 220, Springer-Verlag, Berlin, 1971. MR 0460785 (57:778)
  • [2] P. Hartman, Disconjugate nth order differential equations and principal solutions, Bull. Amer. Math. Soc. 74 (1968), 125-129. MR 36 #5440. MR 0222388 (36:5440)
  • [3] -, Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math. 91 (1969), 306-362. MR 40 #450. MR 0247181 (40:450)
  • [4] -, Corrigendum and addendum: Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math. 93 (1971), 439-451. MR 45 #648. MR 0291557 (45:648)
  • [5] A. Ju. Levin, Non-oscillation of solutions of the equation $ {x^{(n)}} + {p_1}(t){x^{(n - 1)}} + \cdots + {p_n}(t)x = 0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43-96 = Russian Math. Surveys 24 (1969), no. 2, 43-99. MR 40 #7537. MR 0254328 (40:7537)
  • [6] G. Polya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1924), 312-324. MR 1501228
  • [7] D. Willett, Asymptotic behaviour of disconjugate nth order differential equations, Canad. J. Math. 23 (1971), 293-314. MR 45 #2275. MR 0293196 (45:2275)
  • [8] -, Disconjugacy tests for singular linear differential equations, SIAM J. Math. Anal. 2 (1971), 536-545. MR 0304772 (46:3904)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0330632-X
Keywords: Disconjugacy, principal systems
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society