EQUIVARIANT METHOD FOR PERIODIC MAPS

BY

WU-HSIUNG HUANG

ABSTRACT. The notion of coherency with submanifolds for a Morse function on a manifold is introduced and discussed in a general way. A Morse inequality for a given periodic transformation which compares the invariants called qth Euler numbers on fixed point set and the invariants called qth Lefschetz numbers of the transformations is thus obtained. This gives a fixed point theorem in terms of qth Lefschetz number for arbitrary q.

Let f be a periodic transformation of a closed m-dimensional manifold M with fixed point set N. We develop in this note an equivariant approach using Morse theory. We introduce in §2 the notion of coherency with a submanifold S of M for a Morse function and show that such S-coherent Morse functions are dense in $C^\infty(M)$. Furthermore, in this approximation f-invariance will be preserved (§3). The coherency with the fixed point set N of f makes it possible to compare the difference of qth Euler number of N and qth Lefschetz number of f. More precisely, let $\beta_q(N)$ and $\lambda_q(f)$ be respectively the qth Betti numbers of N and the trace of f^* on the qth homology group $H_q(M)$ with real coefficients. Let $B_q(N)$ and $\Lambda_q(f)$ be their alternative sums respectively, i.e.,

$$\beta_q(N) = \beta_q(N) - \beta_{q-1}(N) + \cdots + (-1)^q \beta_q(N),$$

$$\Lambda_q(f) = \lambda_q(f) - \lambda_{q-1}(f) + \cdots + (-1)^q \lambda_q(f),$$

where $0 \leq q \leq m$. We establish in §5 an inequality for arbitrary q that $|\beta_q(N) - \lambda_q(f)|$ is no greater than the qth Morse difference of an arbitrary f-invariant N-coherent Morse function. We obtain as corollaries a fixed point theorem in terms of arbitrary Λ_q (when $q = m$, this is the Lefschetz fixed point theorem) and a more geometric proof of the fact that $\beta_q(N) = \Lambda_q(f)$, i.e., the Euler number of N is equal to the Lefschetz number of f.

The Lemma 1 (§1) which states that a smooth function can be approximated by a Morse function with prescribed "boundary value" is essential to the construction of the approximations.

1. A Morse extension. For a real-valued smooth function F on M, let $C(F)$ denote the set of all critical points of F. F is called a Morse function if for any $p \in C(F)$, the determinant of the Hessian at p does not vanish.

We assume without loss of generality that M is a riemannian manifold with a metric g. Let g_{ij} be the metric tensor of g with respect to a local coordinate (x^i).
and let g^{ij} be the inverse of g_{ij} as matrices. Using the metric g, the differential $dF(x)$ of F at x has a natural way to be identified with a tangent vector at x which is called the gradient $\nabla F(x)$ at x. Locally we have $\nabla F(x) = g^{ij}(\partial F/\partial x^i)(\partial/\partial x^j)$.

We define $\|dF(x)\|$ by

$$\|dF(x)\|^2 = g(\nabla F, \nabla F) \quad \text{at} \quad x$$

and define $\|F\|_{b, \Omega}$ and $\|F\|_{l, \Omega}$ of F on an open set Ω in M by

$$\|F\|_{b, \Omega} = \sup\{|F(x)|; x \in \Omega\},$$

$$\|F\|_{l, \Omega} = \sup\{|F(x)| + \|dF(x)\|; x \in \Omega\}.$$

Let $\phi: \mathbb{R} \to \mathbb{R}$ be a C^∞-function with $0 \leq |\phi(r)| \leq 1$, $\phi(0) = 1$, $\phi''(0) < 0$ and $\phi(r) = 0$ for $|r| \geq 1$. We denote throughout the induced function of mollifier by ϕ_ϵ for each positive number ϵ, i.e. $\phi_\epsilon(r) = \phi(r/\epsilon)$.

There exists a constant $a > 1$ such that

$$|\phi_\epsilon'(r)| < a/\epsilon.$$

It is well known ([4] or [3]) that any given real-valued smooth function on a compact manifold M can be approximated by a Morse function in the norm $\|\cdot\|_{1, M}$. The following lemma establishes this approximation theorem even when the “boundary value” of the desired Morse function has been given.

Lemma 1. Let Ω and D be open sets of a smooth manifold M such that Ω has a compact closure $\overline{\Omega}$ with smooth boundary $\partial \Omega$ and $D \subset \Omega$. Let F be a Morse function defined on $M - D$. Then $F | M - \Omega$ can be extended to a Morse function $\tilde{F}: M \to \mathbb{R}$. Moreover if a smooth function G on M with $\|F - G\|_{b, M - D} < \epsilon$, is given, then the above Morse extension can be made so that $\|\tilde{F} - G\|_{b, M} < 2\epsilon$.

Proof. Choose a metric g for M. For a point x inside Ω, we denote by $r(x)$ the distance with respect to g from x to $\partial \Omega$. Let Υ be the set $\{x \in \Omega \mid r(x) > r\}$. Since $C(F)$ is discrete and Ω is compact, there exist positive numbers η, R and δ such that

$$\delta < \min\{1/2(1 + a), \sqrt{\epsilon/\eta}\} \quad \text{and} \quad \|dF(x)\| > \eta$$

for all x in the strip $\overline{\Omega}_{R-\delta} - \Omega_{R+2\delta}$ contained in $\Omega - D$.

Define $H: M \to \mathbb{R}$ by patching together F and G in $\Omega_{R+\delta} - \Omega_{R+2\delta}$ as follows:

$$H(x) = F(x), \quad x \in M - \Omega_{R+\delta},$$

$$= G(x) + \phi_\delta(R + \delta - r(x))(F(x) - G(x)), \quad x \in \Omega_{R+\delta} - \Omega_{R+2\delta},$$

$$= G(x), \quad x \in \Omega_{R+2\delta}. $$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It follows that \(\|H - G\|_{h,M} < \varepsilon\).

Let \(E\) be a Morse function on \(\Omega_{R-\delta}\) approximating \(H|\Omega_{R-\delta}\) such that

\[
\|E - H\|_{h,\Omega_{R-\delta}} < \delta^2 \eta < \varepsilon.
\]

Finally we define \(F\) on \(M\) by patching together \(E\) and \(F\) in the strip \(\Omega_{R-\delta} - \Omega_R\) as above. In order to see that \(F\) is a Morse function on \(M\), it suffices to show that \(F\) has no critical point in \(\Omega_{R-\delta} - \Omega_R\). In fact, for \(x\) in \(\Omega_{R-\delta} - \Omega_R\), we have

\[
H(x) = F(x) \quad \text{and} \quad \|dF(x)\| > \|dE(x) - dH(x)\| - \|d\varphi_p(R - r(x))\| \cdot \|E(x) - H(x)\| > n - 82v - (a/\delta)82 > 7, \quad (1 - 5(1 + a)) > \eta/2 > 0,
\]

since we have the estimates (1), (2) and (4). The approximation of \(F\) to \(G\) follows evidently from the construction.

2. Coherency with submanifold. Let \(S\) be a closed embedding submanifold of \(M\). In this section we define \(S\)-coherent Morse functions and show an approximation theorem of smooth functions by \(S\)-coherent Morse functions.

Definition 1. A Morse function \(F\) on \(M\) is called \(S\)-coherent if for each \(p\) in \(C(F|S)\), there is a coordinate neighborhood \((U,(x_i))\) with origin at \(p\), \(U \cap S = \{x_{s+1} = \cdots = x_m = 0\}\), and

\[
F(x_1 \cdots x_m) = F(0) - x_1^2 - \cdots - x_s^2 + \cdots + x_m^2
\]

where \(s\) is the dimension of \(S\) at \(p\) with \(s \geq \lambda\).

Such a \((U,(x_i))\) is called an \(S\)-coherent coordinate neighborhood of \(p\) for \(F\). Evidently, if \(F\) is an \(S\)-coherent Morse function on \(M\), then \(F|S\) is a Morse function on \(S\) with \(C(F|S) \subset C(F)\) and at each \(p\) of \(C(F|S)\), the index of \(F|S\) is equal to the index of \(F\).

For the convenience of later use, we fix the following notation:

Definition 2. Given a smooth function \(\psi\) defined on a closed embedding submanifold \(S\) of \(M\), we denote by \(\psi^*\) an extension of \(\psi\) on a tubular neighborhood \(T_\rho\) of \(S\) with radius \(\rho\) defined as follows. Let \(\rho\) be so small that for any \(x\) in \(T_\rho\), there is a unique geodesic joining \(x\) to a point \(x'\) of \(S\) and having the length equal to the distance \(r(x)\) from \(x\) to \(S\). Let

\[
\psi^*(x) = \psi(x') \cdot (2 - \varphi_p(r(x)))
\]

where \(\varphi_p\) is the mollifier relative to \(\rho\) (see §1).

If \(\psi\) is a Morse function, so is \(\psi^*\). In fact,

\[
C(\psi) = C(\psi^*) \quad \text{and} \quad \varphi''(0) < 0.
\]
Note that at $p \in C(\psi)$, the index of ψ equals the index of ψ^*.

Theorem 1. Given a closed submanifold S of M, any smooth function G on M can be approximated uniformly by an S-coherent Morse function F.

Proof. Let g be a Morse function on S approximating $G|_S$. By Lemma 1, the g^* on a tubular neighborhood of S can be extended to a Morse function F on M. F is evidently S-coherent. If the tubular neighborhood of S is sufficiently small, F can be made to approximate G. Q.E.D.

3. Review of isometric actions. In general, for a compact riemannian manifold (M, g), let $\text{ISO}(M, g)$ denote the full isometry group. Let G be a closed subgroup of $\text{ISO}(M, g)$ and p a point in M. By the isotropy group G^p, we mean the subgroup of isometries which leave p fixed. The orbit $G(p)$ of G at p is the set $\{\gamma(p); \gamma \in G\}$.

Each orbit is a closed submanifold embedded in M. An orbit $G(p)$ is called principal if

1. for any $q \in M$, $\dim G^p \leq \dim G^q$, and
2. the number of components of G^p is no greater than the number of components of G^q whenever $\dim G^p = \dim G^q$.

We quote the following well-known result.

Lemma 2 [5]. Let G be a closed subgroup of $\text{ISO}(M, g)$ of a complete riemannian manifold (M, g). Then the union of all the principal orbits of G is open and dense in M.

We return to our given periodic map f of M with order v. Without loss of generality, we may assume that f is an isometry of (M, g) with some metric. In fact we can modify an arbitrarily given metric \bar{g} by taking the mean of the induced metrics $(f^k)_* g$ for $k = 1, 2, \ldots, v$.

Let Γ be the subgroup generated by f in $\text{ISO}(M, g)$. Γ is finite and cyclic with order v. By the order of an orbit of Γ, we mean the cardinal number of the orbit. For the integer k such that there exists an orbit Γ with order k, let M_k be the union of the orbits of order l where l is a divisor of k. Thus we have a lattice consisting of these M_k's with inclusion as the partial ordering. The lower bound of the lattice is evidently the fixed point set $N = M_1$.

We now consider some geometries about N and more generally about M_k's.

Lemma 3. The fixed point set N of an isometry f is a closed totally geodesic submanifold embedded in M [2]. If the isometry f is periodic, then each M_k, defined in the above, is a closed totally geodesic submanifold embedded in M as well as in each M_j with j being a multiple of k.

Proof. For the first statement, one can refer to [2]. An elementary proof with clearer geometric insight can be obtained by using the following two facts as the basis of induction to construct, in an obvious way, local coordinates of N for proving that N is a submanifold of M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(1) For two points p and q of N which are sufficiently close to each other, the unique geodesic connecting p and q is contained in N.

(2) Let γ_1 and γ_2 be two geodesics of M which are contained in N and intersect with each other at a point p of N. Then the parallel transportation of γ_1 along γ_2 generates a 1-parametered family of geodesics whose union is entirely contained in N.

For the second statement of the lemma, we need only to notice that M_k is exactly the fixed point set of f^k acting on M as well as on M_j with j being a multiple of k. This completes the proof.

For any two M_k and M_j, the intersection $M_k \cap M_j$ is evidently the $M_{(k,j)}$ where (k, j) is the greatest common divisor of k and j. On the other hand, $M = M_1$. In fact, for each M_j and each x in M_j, choose a convex neighborhood U of x such that for any y in U, the geodesic joining y to x in U is the only curve joining y to $\Gamma(x)$ and having the length equal to the distance from y to $\Gamma(x)$. It follows that $\Gamma^p \subset \Gamma^k$ and therefore the order of $\Gamma(x)$ is a divisor of that of $\Gamma(y)$. By Lemma 2, we see that the order of $\Gamma(x)$ is a divisor of ν.

4. The approximation.

Theorem 2. Given a periodic transformation f of M with fixed point set N, an f-invariant smooth function $G: M \to \mathbb{R}$ can be uniformly approximated by an f-invariant N-coherent Morse function F.

Proof. We construct F inductively in the following steps.

Step 1. Let h_t be a Morse function on N approximating $G | N$ uniformly. Recalling the Definition 2, we extend h_t to h_t^* on a tubular neighborhood T_{2p} of N.

Step 2. For each prime number p which is a divisor of ν, we shall extend $h_t^* | T_p \cap M_p$ to an f-invariant Morse function $h_p^*: M_p \to \mathbb{R}$ which approximates $G | M_p$.

For a general k with $1 \leq k \leq \nu$, let U_k denote the union of all orbits of order k. By Lemma 2, U_k is open and dense in M_k. Now $h_t^* | T_p \cap U_p$ induces a Morse function

$$\tilde{h}_t^*: (T_p \cap U_p) / \Gamma \to \mathbb{R}$$

where the quotient by Γ means the orbit space of $T_p \cap U_p$ under Γ. By Lemma 1, \tilde{h}_t^* can be extended to a Morse function

$$\tilde{h}_p: U_p / \Gamma \to \mathbb{R}$$

approximating G / Γ restricted on U_p / Γ. This \tilde{h}_p induces an f-invariant N-coherent Morse extension $h_p: M_p \to \mathbb{R}$ of $h_t^* | T_p \cap M_p$. h_p evidently still approximates $G | M_p$.

Step 3. If $\nu \neq p$, we extend h_p to an f-invariant Morse function H_p defined on a tubular neighborhood $T_p(M_p)$ of M_p by considering $h_p^*: T_{kp}(M_p) \to \mathbb{R}$, and then patching h_p^* and \tilde{h}_p together near N as follows.
\[
H_p(x) = h^\dagger(x), \quad x \in T_\eta \cap T_p(M_p),
\]
\[
= h^\dagger(x) + \varphi_\eta(r(x) - \eta)(h^\gamma(x) - h^\dagger(x)), \quad x \in (T_\eta - T_\gamma) \cap T_p(M_p),
\]
\[
= h^\gamma(x), \quad x \in T_p(M) - T_\eta,
\]
where \(\eta = \rho/3 \) and \(r(x) \) denotes the distance from \(x \) to \(N \).

By taking \(\rho_\eta \) sufficiently small, \(h^\dagger \) and \(h^\gamma \) as well as their derivatives will differ from each other only by a small amount in the patching strip. This guarantees that no critical point of \(H_p \) will appear in the strip. Clearly \(H_p \) approximates \(G \). \(H_p \) is also \(f \)-invariant, since \(h^\dagger \) and \(h^\gamma \) are \(f \)-invariant and \(\varphi_\eta \) is symmetric with respect to \(0 \).

Step 4. For \(M_k \), we assume according to the induction hypothesis that for each divisor \(l \) of \(k \), \(H_l \) has been constructed. By the Lemma 1, we extend the function

\[
\bigcup H_l \mid M_k \cap \left(\bigcup T_h(M_l) \right)
\]

to an \(f \)-invariant \(N \)-coherent Morse function \(h_k : M_k \to \mathbb{R} \) in the way similar to that described in Step 2. \(h_k \) approximates \(G \) again. If \(k < r \), we construct again \(h^\dagger \) and patch together \(h^\dagger_k \) and \(h^\gamma \), for all divisors \(l \) of \(k \), as in Step 2 to obtain \(H_k \). If \(k = r \), we take \(F = h_r \). This completes the construction of \(F \).

Remark. Such \(F \) is indeed \(M_r \)-coherent for all \(l \).

5. **The Inequality and its applications.** In general, for \(Y \subset X \subset M \), let

\[
\beta_q(X, Y) = \text{the Betti number of the pair } (X, Y),
\]
\[
\lambda_q(X, Y) = \text{the trace of } f_\alpha \text{ on } H_q(X, Y),
\]
and let

\[
B_q(X, Y) = \beta_q(X, Y) - \beta_{q-1}(X, Y) + \cdots + (-1)^q \beta_0(X, Y),
\]
\[
\Lambda_q(X, Y) = \lambda_q(X, Y) - \lambda_{q-1}(X, Y) + \cdots + (-1)^q \lambda_0(X, Y).
\]

We fix an \(f \)-invariant \(N \)-coherent Morse function \(F \) chosen arbitrarily. For a real number \(a \), let \(M^a \) be the set \(\{ x \in M \mid F(x) \leq a \} \).

Let all the critical values \(c_\alpha \)'s of \(F \) be ordered such that \(c_1 > c_2 > \cdots > c_k \). Let \(p_1^\alpha, \ldots, p_l^\alpha \) be all the critical points of \(F \) with critical value \(c_\alpha \) and of indices \(v_1^\alpha, \ldots, v_l^\alpha \) respectively, where \(p_1^\alpha, \ldots, p_l^\alpha \) are precisely the ones contained in \(N \). (\(l \) and \(k \) depend on \(\alpha \). The superscript \(\alpha \) will be omitted everywhere when no confusion can occur.)

For each \(p_j, 1 \leq j \leq k \), there is an \(N \)-coherent coordinate neighborhood \((x_j) \) of \(p_j \). Let \(e_j \) be the \(r_j \)-cell \(\{ x_{j+1} = x_{j+2} = \cdots = x_m = 0 \} \). Consider numbers \(a_0, a_1, \ldots, a_n \) such that
When \(a_\alpha\) is chosen sufficiently close to \(c_\alpha\), we can have

1. \(e_j\)'s are disjoint and \(\partial e_j \subset M^{\alpha_\alpha}\);
2. \(\{(e_j, \partial e_j) \mid j = 1, \ldots, l\}\) and \(\{(e_j, \partial e_j) \mid j = 1, \ldots, l, \ldots, k\}\) are respectively the generators of the homology groups \(H(N^{\alpha_\alpha-1}, N^{\alpha_\alpha})\) and \(H(M^{\alpha_\alpha-1}, M^{\alpha_\alpha})\); and
3. for \(1 \leq j \leq l\), \(f\) is the identity map on \(e_j\) and for \(l < j \leq k\), \(f_\alpha(e_j, \partial e_j) = (e_i, \partial e_i)\) with \(i \neq j\), where \(f_\alpha\) is the induced map of \(f\) on \(H(M^{\alpha_\alpha-1}, M^{\alpha_\alpha})\).

It follows that for each \(q\) and \(\alpha\) both of \(\beta_q(N^{\alpha_\alpha-1}, N^{\alpha_\alpha})\) and \(\lambda_q(M^{\alpha_\alpha-1}, M^{\alpha_\alpha})\) are equal to the number of \(e_j\)'s with \(y_j = q\) and \(1 \leq j \leq l\). Hence we have

\[
\beta_q(N^{\alpha_\alpha-1}, N^{\alpha_\alpha}) = \lambda_q(M^{\alpha_\alpha-1}, M^{\alpha_\alpha}),
\]
\[
B_q(N^{\alpha_\alpha-1}, N^{\alpha_\alpha}) = \Lambda_q(M^{\alpha_\alpha-1}, M^{\alpha_\alpha}).
\]

From the exactness of

\[
0 \rightarrow \partial_\alpha(H_{q+1}(N, N^{\alpha_\alpha-1})) \rightarrow H_q(N^{\alpha_\alpha}, N^{\alpha_\alpha-1}) \rightarrow H_q(N, N^{\alpha_\alpha})
\]

we have

\[
B_q(N, N^{\alpha_\alpha}) = B_q(N^{\alpha_\alpha-1}, N^{\alpha_\alpha}) + B_q(N, N^{\alpha_\alpha-1}) - \varepsilon_{q,\alpha}
\]

where \(\varepsilon_{q,\alpha}\) is the rank of \(\partial_\alpha(H_{q+1}(N, N^{\alpha_\alpha-1}))\). Similarly, we have

\[
\Lambda_q(M, M^{\alpha_\alpha}) = \Lambda_q(M^{\alpha_\alpha-1}, M^{\alpha_\alpha}) + \Lambda_q(M, M^{\alpha_\alpha-1}) - \eta_{q,\alpha}
\]

where \(\eta_{q,\alpha}\) is the trace of \(f_\alpha\) on \(\partial_\alpha(H_{q+1}(M, M^{\alpha_\alpha-1}))\). By induction we have

\[
B_q(N) = \sum_{\alpha} B_q(N^{\alpha_\alpha}, N^{\alpha_\alpha-1}) - \sum_{\alpha} \varepsilon_{q,\alpha}
\]

and

\[
\Lambda_q(f) = \sum_{\alpha} \Lambda_q(M^{\alpha_\alpha}, M^{\alpha_\alpha-1}) - \sum_{\alpha} \eta_{q,\alpha}.
\]

The well-known Morse inequality states that given an arbitrary Morse function on \(M\), we have

\[
B_q(M) \leq C_q \overset{\text{def}}{=} c_0 - c_{q-1} + \cdots + (-1)^q c_0
\]

where \(c_q\) denotes the number of critical points of the Morse function with index \(q\). The difference \(C_q - B_q(M)\) is given by

\[
\sum_{\alpha} \text{rank}[\partial_\alpha(H_{q+1}(M^{\alpha_\alpha}, M^{\alpha_\alpha-1}))]
\]
if we adopt the subdivision of M according to the Morse function as we did in
the above.

Definition 3. We call the difference $C_q - B_q(M)$ the qth Morse difference.
We denote the qth Morse difference of F by $\delta_q(F)$. However,

$$|\eta_{q,a} - e_{q,a}| \leq \text{rank}[\partial_* (H_{q+1}(M^{a_*}, M^{a_{q-1}}))]$$

Therefore we obtain

Theorem 3. Given a periodic transformation f of a compact smooth m-dimensional
manifold M with fixed point set N, we have the inequality

$$|\Lambda_q(f) - B_q(N)| \leq \delta_q(F)$$

for each $q = 0, \ldots, m$ and each f-invariant N-coherent Morse function F, where

$$\Lambda_q(f) = \sum_{r=0}^{q} (-1)^{q-r} \text{trace of } f^r \text{ on } H_r(M),$$

$$B_q(N) = \sum_{r=0}^{q} (-1)^{q-r} \text{rth Betti number of } N,$$

and $\delta_q(F)$ is the qth Morse difference of F.

As corollaries we obtain a fixed point set theorem.

Theorem 4. Given a periodic transformation f of a compact smooth manifold M, if

$$|\Lambda_q(f)| > \delta_q(F) \text{ for some } q = 1, \ldots, m \text{ and some } f \text{-invariant Morse function } F \text{ on } M,$$

then f has a fixed point.

Proof. Suppose f is fixed point free. Then every Morse function is N-coherent.
Also $B_q(N) = 0$. These lead to a contradiction.

Remark 2. In particular when $q = m$, Λ_m is the usual Lefschetz number and
$\delta_m(F) = 0$ for all F. Therefore this corollary is a generalization of the Lefschetz
fixed point theorem for a periodic map.

Remark 3. Such a fixed point theorem based on Λ_q and $\delta_q(F)$ for arbitrary q
and F gives the best possible estimation. In fact, let $T^2 = S^1 \times S^1 = \{e^{i\theta}, e^{i\varphi} \mid 0 \leq \theta, \varphi < 2\pi\}$ and consider $f: (e^{i\theta}, e^{i\varphi}) \to (e^{i\theta}, e^{-i\varphi})$ and $F(e^{i\theta} + e^{i\varphi}) = \cos \theta + \cos 2\varphi$. Then F is an f-invariant Morse function with $\Lambda_1 = 1 = \delta_1(F)$ but f has
no fixed point.

Since $\delta_m(F) = 0$, we obtain

Corollary 1. Given a periodic transformation f on a compact smooth manifold M^m
with fixed point set N, we have the Lefschetz number of f equal to the Euler number
of the fixed point set N and therefore equal to the integral over N of the restricted
"intrinsic curvature" in the sense of Chern [1].
This statement can be regarded as a generalization of the Gauss-Bonnet theorem. A stronger result for any isometry can be proven rather directly by Mayer-Vietoris sequence applying on a tubular neighborhood of \(N \). However, the above approach using the viewpoint of Morse theory may help one to have better geometric insight.

REFERENCES

Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Current address: Department of Mathematics, National Taiwan University, Taipei, Taiwan