A MULTIPLIER THEOREM FOR FOURIER TRANSFORMS

BY

JAMES D. McCALL, JR.

ABSTRACT. A function \(f \) analytic in the upper half-plane \(\Pi^+ \) is said to be of class \(E_p(\Pi^+) \) \((0 < p < \infty) \) if there exists a constant \(C \) such that \(\int_{-\infty}^{\infty} |f(x + iy)|^p \, dx \leq C < \infty \) for all \(y > 0 \). These classes are an extension of the \(H_p \) spaces of the unit disc \(U \). For \(f \) belonging to \(E_p(\Pi^+) \) \((0 < p \leq 2) \), there exists a Fourier transform \(\hat{f} \) with the property that \(\hat{f}(z) = (2\pi)^{-1} \int_{\mathbb{R}} f(e^{i\theta}) e^{-iz\theta} \, d\theta \). This makes it possible to give a definition for the multiplication of \(E_p(\Pi^+) \) \((0 < p < 2) \) into \(L_q(0, \infty) \) that is analogous to the multiplication of \(H_p(U) \) into \(L_q \). In this paper, we consider the case \(0 < p < 1 \) and \(p < q \) and derive a necessary and sufficient condition for multiplying \(E_p(\Pi^+) \) into \(L_q(0, \infty) \).

1. Introduction. A function \(f \) analytic in the unit disc \(U \) is said to be of class \(H_p(U) \) if there exists a constant \(C \) such that \(\int_{0}^{2\pi} |f(re^{i\theta})|^p \, d\theta \leq C < \infty \) for all \(r < 1 \). For these classes there exists a rich and varied theory which is described in Duren's book [2]. Among the concepts studied is that of multipliers from \(H_p(U) \) to \(L_q \).

Definition 1. A sequence \(\{\lambda_n\} \) is said to multiply \(H_p(U) \) into \(L_q \) \((0 < q < \infty) \), if for each \(f(z) = \sum a_n z^n \) belonging to \(H_p(U) \), \(\sum |a_n|^p |\lambda_n|^q < \infty \).

Duren and Shields have shown that a necessary and sufficient condition for \(\{\lambda_n\} \) to multiply \(H_p(U) \) \((0 < p < 1) \) into \(L_q \) \((p \leq q < \infty) \) is that

\[
\sum_{n=1}^{N} n^{\pi/p} |\lambda_n|^q = O(N^q) \quad [2], [3].
\]

It is our aim in this paper to consider classes of functions analytic in the upper half-plane \(\Pi^+ \), which are analogous to the classes \(H_p(U) \), and to prove a result similar to that of Duren and Shields.

2. The main result.

Definition 2. A function \(f \) analytic in \(\Pi^+ \) is said to be of class \(E_p(\Pi^+) \) \((0 < p < \infty) \) if there exists a constant \(C \) such that

\[
M_p(y,f) = \left(\int_{-\infty}^{\infty} |f(x + iy)|^p \, dx \right)^{1/p} \leq C < \infty
\]

for all \(0 < y < \infty \).

The expression \(M_p(y,f) \) is called a \(p \)th mean of \(f \). Also the expression \(M_\infty(y,f) = \sup_{-\infty < x < \infty} |f(x + iy)| \) is a \(p \)th mean of \(f \) and, if \(M_\infty(y,f) \) is bounded, \(f \) is said to belong to \(E_\infty(\Pi^+) \).

Received by the editors July 18, 1972 and, in revised form, December 14, 1972.

AMS (MOS) subject classifications (1970). Primary 30A78; Secondary 42A68.

Key words and phrases. \(H_p \) spaces, multipliers.

Copyright © 1974, American Mathematical Society

359
Definition 3. If f belongs to $E_p(\Pi^+) \ (0 < p < 1)$, then the Fourier transform of f is

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x + iy)e^{-i(x+iy)t}dx \quad [6].$$

A proof of the fact that \hat{f} exists and is independent of y is given in §5. In addition, the facts $\hat{f}(t)$ is continuous, $\hat{f}(t) = 0$ for $t \leq 0$, and

$$f(z) = (2\pi)^{-1} \int_{t=0}^{t=\infty} \hat{f}(i)e^{it}dt,$$

are proved there.

Definition 4. Let $\phi(t)$ be a function measurable on $(0, \infty)$. Then $\phi(t)$ is said to multiply $E_p(\Pi^+) \ (0 < p < 1)$ into $L_q(0, \infty) \ (0 < q < \infty)$, if for each $f(z) = \sum_{n=0}^{\infty} f_nJ_n(t)e^{int}dt$ belonging to $E_p(\Pi^+)$,

$$\int_{t=0}^{t=\infty} |\phi(t)|^q |\hat{f}(t)|^q dt < \infty.$$

We now state the main result.

Theorem A. Let $\phi(t)$ be a function measurable on $(0, \infty)$. Then $\phi(t)$ multiplies $E_p(\Pi^+)$ into $L_q(0, \infty) \ (p \leq q)$ if and only if

$$(1) \quad \int_{t=0}^{t=\infty} \frac{t^\alpha}{t^\lambda} |\phi(t)|^q dt \leq KX^q,$$

where K is a positive constant.

The proof of Theorem A requires the use of two other results.

Theorem B. If $0 < p < q \leq \infty$, f belongs to $E_p(\Pi^+)$, $\alpha = 1/p - 1/q$, and $\lambda \geq p$, then $\int_{t=0}^{t=\infty} y^\lambda M_q^\alpha(y,f)dy < \infty$.

The second of these results needs some introduction. If f belongs to $E_p(\Pi^+) \ (0 < p < \infty)$, then $\lim_{y \to 0} f(x + iy) = f(x)$ exists a.e. and

$$\rho(f,g) = \int_{0}^{\infty} |f(x) - g(x)|^p dx,$$

where f and g belong to $E_p(\Pi^+)$, is a translation invariant metric on $E_p(\Pi^+)$. Moreover, under this metric, $E_p(\Pi^+) \ (0 < p < \infty)$ is a complete topological vector space. In other words, $E_p(\Pi^+) \ (0 < p < \infty)$ is an F-space [1], [2], [5]. Finally, we say that an operator A from $E_p(\Pi^+)$ into $L_q(0, \infty)$ is bounded if there exists a constant K such that $\|A(f)\|_q < K\|f\|_p$, where $\|f\|_p = \{\int_{0}^{\infty} |f(x)|^p dx\}^{1/p}$.

Theorem C. Let $\phi(t)$ be a function measurable on $(0, \infty)$. If $\phi(t)$ multiplies $E_p(\Pi^+) \ (0 < p < 1)$ into $L_q(0, \infty)$ then the operator $A(f)(t) = \phi(t)\hat{f}(t)$ is bounded.
We defer, for now, the proofs of Theorem B and Theorem C in order to give an immediate proof of Theorem A.

Proof of Theorem A. We begin by showing that (1) is necessary. So let us consider the function

\[F(z) = F_p(z) = (2\pi)^{-1} \int_0^\infty t^{1/p} e^{-zt} e^{-t^q} dt. \]

Since the Laplace transform of \(t^{u-1} (u > 0) \) is \(\Gamma(u)/s^u \), where \(s \) is a complex number with \(\text{Re} \ s > 0 \), we see that setting \(u = 1 + 1/p \) and \(s = -iz + \rho \) gives

\[F(z) = \Gamma(1 + 1/p)/(\rho - iz)^{1+1/p}. \]

From this it follows that \(F(z) \) belongs to \(E_q(\Pi^+) \) and \(\|F\|_p = M/p \). But by Theorem C there exists a constant \(K \) such that

\[\|\Lambda(f)\|_q \leq K\|F\|_p, \]

so \(\|\hat{F}(i)\phi(i)\|_q \leq KM/p. \) Thus, our next step is to find \(\hat{F}(i) \). However, \(F(x + iy) = F_p(x) \) is in \(L_q(-\infty, \infty) \) and is the Fourier transform of

\[g(t) = (2\pi)^{-1} t^{1/p} e^{-t^p} e^{-t^q} \quad \text{if } t > 0, \]

\[= 0 \quad \text{if } t < 0, \]

which also belongs to \(L_q(-\infty, \infty) \). Hence \(\hat{F}(i) e^{-t^q} = \hat{F}_p(i) = 2\pi g(i) \) or \(\hat{F}(i) = t^{1/p} e^{-t^q} \) if \(t \geq 0 \) and zero if \(t < 0 \) [7]. Consequently,

\[\int_0^\infty t^{q/p} |\phi(t)|^q e^{-t^q} dt \leq K^q M^q/p^q \]

and this implies that

\[\int_0^X t^{q/p} |\phi(t)|^q dt \leq K^q M^q/p^q \]

for \(X > 0 \). So taking \(\rho = 1/X \), we find

\[\int_0^X t^{q/p} |\phi(t)|^q dt \leq K M^q e^{qX^q}. \]

To prove that (1) is sufficient, we begin by considering the integral

\[\int_0^\infty t^{q/p} |\phi(t)|^q e^{-t^q} dt \quad (y > 0). \]

Letting \(S(t) = \int_0^t t^{q/p} |\phi(t)|^q dt \) and integrating by parts we find that when we use the estimate \(S(t) \leq Kt^q, \) the integral is less than or equal to \(Ky \int_0^\infty t^q e^{-t^q} dt = KT(q + 1)/y^q. \) Hence

\[y^q \int_0^\infty t^{q/p} |\phi(t)|^q e^{-t^q} dt \leq C < \infty \]
for \(y > 0 \). Next we note that for \(\gamma = q(1/p - 1) \), Theorem B implies that for \(f \) belonging to \(E_p(\Pi^+) \) \((0 < p < 1)\),

\[
\int_0^\infty y^{-1} M_\gamma^q(y,f) \, dy < \infty.
\]

Thus for each \(f \) belonging to \(E_p(\Pi^+) \)

\[
\int_0^\infty y^{-1} M_\gamma^q(y,f) \left[y^q \int_0^\infty t^{q/p} |\varphi(t)|^q e^{-yt} \, dt \right] \, dy < \infty,
\]

or using Fubini's theorem

\[
\int_0^\infty \int_0^\infty t^{q/p} |\varphi(t)|^q y^{q-1} M_\gamma^q(y,f) e^{-yt} \, dt \, dy < \infty.
\]

But from the definition of the Fourier transform for \(f \), we have \(|\hat{f}(t)| e^{-yt} \leq M_\gamma(y,f)\). Thus

\[
\int_0^\infty |\varphi(t)|^q |\hat{f}(t)|^{q/p} t^{q/p} \int_0^\infty y^{q-1} e^{-(q+1)yt} \, dy \, dt < \infty,
\]

or

\[
\frac{\Gamma(q/p)}{(q+1)^{q/p}} \int_0^\infty |\varphi(t)|^q |\hat{f}(t)|^q \, dt < \infty. \quad \Box
\]

Theorem A has the following interesting corollary.

Corollary. If \(f \) belongs to \(E_p(\Pi^+) \) \((0 < p < 1)\), then \(\int_0^\infty |\hat{f}(t)|^{p} \, dt < \infty \).

This is an extension of the following results.

Theorem (Hardy-Littlewood-Titchmarsh). If \(f \) belongs to \(E_p(\Pi^+) \) \((1 < p < 2)\), then \(\int_0^\infty |\hat{f}(t)|^{2} \, dt < \infty \) \([8]\).

Theorem (Hille-Tamarkin). If \(f \) belongs to \(E_1(\Pi^+) \), then \(\int_0^\infty |\hat{f}(t)| \, dt < \infty \) \([4]\).

3. **The proof of Theorem B.** This proof is a consequence of several other theorems.

Theorem 1. Let \(u(z) \) be a nonnegative subharmonic function defined on \(\Pi^+ \) and suppose

\[
\int_{-\infty}^{\infty} u(x + iy) \, dx \leq C/y^\alpha \quad (y > 0),
\]

where \(\alpha \geq 0 \). Then there exists a constant \(K = K(\alpha) \) such that \(u(x_0 + iy_0) \leq KC/y_0^{\alpha+1} \) for each point \(z_0 = x_0 + iy_0 \) \((y_0 > 0)\).

Proof. The case \(\alpha = 0 \) was proved by Krylov \([5]\). So assume \(\alpha > 0 \). Then setting \(y_1 = y_0/2 \) and \(u_{y_1}(z) = u(x + i(y + y_1)) \), we find

\[
\int_{-\infty}^{\infty} u_{y_1}(x + iy) \, dx \leq C/y_1^\alpha \quad (y > 0).
\]
Hence, by the case $\alpha = 0$, we have $u_{y_1}(x_0 + iy_2) \leq KC/y_1^\beta y_2$ ($y_2 > 0$), and putting $y_1 = y_2 = y_0/2$,

$$u(x_0 + iy_0) \leq 2^{a+1} KC/y_0^{q+1}. \quad \square$$

Theorem 2. Suppose $f(z)$ is analytic in Π^+ and

(1) $M_p(y, f) \leq C/y^\beta$ \hspace{1em} ($0 < p < \infty, \beta \geq 0$).

Then there exists a constant $K = K(\beta, p, q)$ such that

(2) $M_q(y, f) \leq KC/y^{\beta + \frac{1}{p} - \frac{1}{q}}$ \hspace{1em} ($p < q \leq \infty$).

Proof. It suffices to consider the case $q = \infty$. For suppose (2) has been proven for $q = \infty$ and $K \geq 1$ (which we may assume without loss of generality). Then

$$M_q(y, f) = \left\{ \int_0^\infty |f(x + iy)|^p |f(x + iy)|^{q-p} \, dx \right\}^{1/q}$$

$$\leq \left[M_\infty(y, f) \right]^{q-p/q} \left[M_p(y, f) \right]^{p/q}$$

$$\leq K^{q-p/q} C/y^\beta,$$

where $\lambda = \beta + 1/p - 1/q$. Now to derive the theorem for $q = \infty$, let $u(z)$ be the nonnegative subharmonic function $|f(z)|^p$ and $a = \beta p$. Then Theorem 1 implies

$$|f(x_0 + iy_0)|^p \leq KC/y_0^{q+1},$$

which is equivalent to (2). \hspace{1em} \square

Theorem 3. Suppose f belongs to $E_p(\Pi^+)$. Then for $1 < p < \infty$, $-1 < b$, and $1 < a < \infty$,

(3) $\int_0^\infty y^b M_p^a(y, f) \, dy \leq C \int_0^\infty y^{a+b} M_p^a(y, f') \, dy,$

where $C = C(a, b)$ is independent of f.

Proof. We begin by assuming that f is analytic in the closed upper half-plane. Then integrating by parts we find

$$\int_0^\infty y^b M_p^a(y, f) \, dy = \frac{y_0^{b+1}}{b + 1} M_p^a(y_0, f)$$

$$- \frac{1}{b + 1} \int_0^\infty y^b M_p^a(y_0, f) \, dy.$$

Thus our next step is to estimate $[(\partial/\partial y) M_p^a(y, f)]$. But

$$(\partial/\partial y) M_p^a(y, f) = (a/p) M_p^a(y, f) (\partial/\partial y) M_p^a(y, f),$$
so we need to estimate $|(\partial/\partial y)M_p^*(y,f)|$.

However,

$$\left| \frac{\partial}{\partial y} |f(x+iy)|^p \right| = p |f(x+iy)|^{p-1} \left| \frac{\partial}{\partial y} |f(x+iy)| \right|$$

and

$$\left| |f(x+iy_1)| - |f(x+iy_2)| \right| \leq \left| \frac{f(x+iy_1) - f(x+iy_2)}{y_1 - y_2} \right|$$

implies

$$|\frac{\partial}{\partial y} |f(x+iy)|| \leq |f'(x+iy)|,$$

so

$$\left| \frac{\partial}{\partial y} |f(x+iy)|^p \right| \leq p |f(x+iy)|^{p-1} |f'(x+iy)|.$$

Thus Hölder's inequality implies

$$|\frac{\partial}{\partial y} M_p^*(y,f)| \leq p M_p^{p-1}(y,f) M_p(y,f')$$

and this implies

$$|\frac{\partial}{\partial y} M_p^*(y,f)| \leq a M_p^{p-1}(y,f) M_p(y,f').$$

But now we have

$$\left| \int_0^a y^{b+1} \frac{\partial}{\partial y} (M_p^*(y,f)) \, dy \right| \leq a \int_0^a y^{b+1} M_p^{p-1}(y,f) M_p(y,f') \, dy$$

$$\leq a \left\{ \int_0^a y^b M_p^*(y,f) \, dy \right\}^{1/a} \left\{ \int_0^a y^{a+b} M_p^*(y,f') \, dy \right\}^{1/a},$$

where we have used Hölder's inequality again. Hence

$$\left\{ \int_0^a y^b M_p^*(y,f) \, dy \right\}^{1/a}$$

$$\leq \left(\frac{y^{b+1}}{b+1} \right)^{1/a} M_p^*(y_0,f) + \frac{a}{b+1} \left\{ \int_0^a y^{a+b} M_p^*(y,f') \, dy \right\}^{1/a},$$

where we have used the estimate

$$\int_0^a y^b M_p^*(y,f) \, dy \geq \frac{y_0^{b+1} M_p^*(y_0,f)}{b+1}. \quad (4)$$
which follows from the fact that the means $M_p(y, f)$ are nonincreasing functions of y [5].

From (4), it is clear that in order to complete the proof for this case, we need only show that $y^{b+1}M_p^b(y_0, f)$ tends to zero as y_0 tends to infinity. But using Theorem 2, it is easy to see that $f(x + iy_0) = -i \int_0^{y_0} f'(x + iy) \, dy$ and applying Minkowski's inequality, we find

$$M_p(y_0, f) \leq \int_0^{y_0} M_p(y, f') \, dy.$$

So suppose $r > 1$. Then

$$M_p^a(y_0, f) \leq [C(y_0)]^a \left[\frac{1}{r - 1} \int_0^{y_0} y^r M_p(y, f') \frac{d(-1/\sqrt{y-1})}{C(y_0)} \right]^a,$$

where $C(y_0) = \int_0^{y_0} d(-1/\sqrt{y-1}) = 1/y_0^{b+1}$, and Jensen's inequality gives

$$M_p^a(y_0, f) \leq [C(y_0)]^{a-1} \frac{1}{(r - 1)^{a-1}} \int_0^{y_0} y^{ar-1} M_p^a(y, f') \, dy.$$

Hence setting $r = (a + b)/(a - 1)$, we have

$$y^{b+1}M_p^b(y_0, f) \leq \frac{1}{((b + 1)/(a - 1))^{a-1}} \int_0^{y_0} y^{a+b} M_p^a(y, f') \, dy,$$

from which it follows that $y^{b+1}M_p^b(y_0, f)$ tends to zero as y_0 tends to infinity.

Finally we remove the restriction that f is analytic in the closed upper half-plane. Since $f(z) = f(z + iy)$ is analytic in the closed upper half-plane, the theorem holds for $f(z)$. Thus the result for $f(z)$ follows from letting y tend to zero and applying the monotone convergence theorem. \qed

These three theorems have prepared the way for a proof of Theorem B.

Proof of Theorem B. We first reduce the theorem to the case $\lambda = p = 2$. By Theorem 2

$$M_\lambda^\lambda(y, f) \leq K^{\lambda-p} M_\lambda^\lambda(y, f)/y^{\lambda(a-\lambda)p},$$

so

$$\int_0^{y_0} y^{a-1} M_\lambda^\lambda(y, f) \, dy \leq K^{\lambda-p} \int_0^{y_0} y^{a-1} M_\lambda^\lambda(y, f) \, dy.$$

Hence we can assume $\lambda = p$. Next assume the theorem is true for $\lambda = p = 2$ and $f(x) \neq 0$ in Π^+ and belongs to $E_2(\Pi^+)$. Then $g(z) = |f(z)|^{p/2}$ belongs to $E_2(\Pi^+)$ and

$$\int_0^{y_0} y^{-p/2} M_\lambda^p(y, f) \, dy = \int_0^{y_0} y^{-2/2} M_\lambda^2(y, g) \, dy < \infty,$$
where \(s = \frac{2q}{p} > 2 \). In case \(f(z) \) has zeros in \(\Pi^+ \), it is possible to write it as a sum of two nonzero functions in \(E_\rho(\Pi^+) \) [2] and still show that it suffices to take \(p = 2 \).

So let \(f \in E_\rho(\Pi^+) \). Then using the Paley-Wiener theorem [7], we can write

\[
f(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t)e^{zt} dt,
\]

where \(\hat{f}(t) \) is the Fourier transform of the boundary function \(f(x) \) of \(f(z) \). Also

\[
f'(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t\hat{f}(t)e^{zt} dt.
\]

Next we assume \(2 < q < \infty \). Then by Theorem 3

\[
\int_{-\infty}^{\infty} y^{-2/q} M_q^2(y,f) \, dy \leq C \int_{-\infty}^{\infty} y^{-2-2/q} M_2^2(y,f') \, dy,
\]

and by Theorem 2 \(M_q(y,f') \leq K y^{q-1/2} M_2(y/2,f') \), so

\[
\int_{-\infty}^{\infty} y^{-2/q} M_q^2(y,f) \, dy \leq CK \int_{0}^{\infty} y M_2^2(y/2,f') \, dy.
\]

Finally, by Plancherel's theorem [7], we find

\[
\int_{-\infty}^{\infty} y^{-2/q} M_q^2(y,f) \, dy \leq \frac{CK}{2\pi} \int_{0}^{\infty} y \int_{0}^{\infty} |\hat{f}(t)|^2 t^2 e^{-yt} dt \, dy
\]

\[
= \frac{CK}{2\pi} \int_{0}^{\infty} |\hat{f}(t)|^2 t^2 \int_{0}^{\infty} ye^{-yt} \, dy \, dt
\]

\[
= \frac{CK}{2\pi} \int_{0}^{\infty} |\hat{f}(t)|^2 \, dt
\]

\[
= CK \int_{0}^{\infty} |f(x)|^2 \, dx < \infty.
\]

If \(q = \infty \), then the estimate

\[
M_\infty^2(y,f) \leq K M_2^2(y/2,f)/y^{2/r}
\]

for some \(r > 2 \) can be used to derive the desired results. \(\square \)

4. The proof of Theorem C. Since \(E_\rho(\Pi^+) \) is an \(F \)-space under the metric \(\rho(f,g) = \int_{-\infty}^{\infty} |f(x) - g(x)|^p \, dx \), we can use the closed graph theorem. Thus we need to show that \(\Lambda \) is a closed operator. So let \(\{f_n\} \) be a sequence which converges in \(E_\rho(\Pi^+) \) to \(f \) and also suppose \(\Lambda(f_n)(t) = \phi(t)f_n(t) \) converges to \(g(t) \) in \(L_q(0,\infty) \). Then we need to show that \(\Lambda(f)(t) = g(t) \) a.e.

Considering the sequence \(\{f_n\} \) and \(f \) first, we find by Theorem 2 that

\[
\left\{ \int_{-\infty}^{\infty} |f_n(x + iy_0) - f(x + iy_0)|^2 \, dx \right\}^{1/2} \leq \frac{K\|f_n - f\|_p}{y_0^{1/p - 1/2}}.
\]
where $y_0 > 0$. Thus $f_{y_0,n}(z) = f_n(z + iy_0)$ converges to $f_{y_0}(z) = f(z + iy_0)$ in $E_2(\Pi^+)$. Moreover, it is easy to see that the Fourier transform of $f_{y_0}(x)$ is $\hat{f}_n(t)e^{-y_0't}$, while the Fourier transform of $f_{y_0}(x)$ is $f(t)e^{-y_0't}$. Consequently, Plancherel's theorem [7] implies that $\hat{f}_n(t)e^{-y_0't}$ converges to $\hat{f}(t)e^{-y_0't}$ in $L_2(0, \infty)$. Hence, there exists a subsequence $\{\hat{f}_n(t)\}$ of $\{\hat{f}(t)\}$ converging to $\hat{f}(t)$ a.e. But the sequence $\{\Lambda(f_n)\}$ also converges to $g(t)$ in $L_2(0, \infty)$. Therefore, there exists a subsequence of $\{\Lambda(f_n)\}$, which we also denote by $\{\Lambda(f_n)\}$, converging to $g(t)$ a.e. Thus $\{\phi(t)f_n(t)\}$ converges to $\phi(t)f(t)$ a.e. and also to $g(t)$ a.e., which implies

$$\phi(t)\hat{f}(t) = g(t) \quad \text{a.e.} \quad \square$$

5. Fourier transform. The Fourier transform defined in §2 certainly exists since Theorem 2 implies that $f_n(x) = f(x + iy)$ belongs to $L_1(-\infty, \infty)$. In fact, if C is a constant such that $M_p(y,f) \leq C$ for $y > 0$, then there exists a constant $K = K(0,p,1)$ such that

$$\int_{-\infty}^{\infty} |f(x + iy)| \, dx \leq CK/y^{1/p-1}$$

for $y > 0$.

To see that \hat{f} is independent of y, fix $0 < y_1 < y_2 < \infty$ and for each $\alpha > 0$ let Γ_α be the rectangular contour with vertices $\pm \alpha + iy_1$ and $\pm \alpha + iy_2$. By Cauchy's theorem

$$\int_{\Gamma_\alpha} f(z)e^{-iz\beta} \, dz = 0.$$

Next let $I = [y_1, y_2]$ and put

$$\Phi(\beta) = i\int_I f(\beta + iu)e^{-iu\beta}e^{iu} \, du.$$

Then $|\Phi(\beta)| \leq e^{\alpha I} \int_{y_1}^{y_2} |f(\beta + iu)| \, du$. Now if we let

$$\Psi(\beta) = \int_{y_1}^{y_2} |f(\beta + iu)| \, du,$$

then Fubini's theorem and (1) imply

$$\int_{-\infty}^{\infty} \Psi(\beta) d\beta = \int_{y_1}^{y_2} \int_{-\infty}^{\infty} |f(\beta + iy)| \, d\beta \, dy \leq \frac{CK}{y_1^{1/p-1}}(y_2 - y_1).$$

Thus there exists a sequence $\{\alpha_j\}$ such that $\alpha_j \to \infty$ as $j \to \infty$ and $\Psi(\alpha_j) + \Psi(-\alpha_j) \to 0$ as $j \to \infty$. Hence we have

$$\Phi(\alpha_j) \to 0 \quad \text{and} \quad \Phi(-\alpha_j) \to 0$$

as $j \to \infty$. Now combining (1), (2), and (3), we find

$$\int_{-\infty}^{\infty} f(x + iy_1)e^{-i(x+iy_1)\beta} \, dx$$

$$= \int_{-\infty}^{\infty} f(x + iy_2)e^{-i(x+iy_2)\beta} \, dx,$$

i.e., \hat{f} is independent of y.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If we let \(f_y(z) = f(z + iy) \), then (4) becomes

\[
\hat{f}(t) = e^{\pi i t} \hat{f}_y(t) = e^{\pi i t} f_y(t).
\]

Since \(\hat{f}_y \) is the Fourier transform of an \(L^1(-\infty, \infty) \) function, it is continuous and hence \(\hat{f} \) is continuous.

Using (1) again, we see that

\[
|\hat{f}(t)| e^{-\pi y} = |\hat{f}_y(t)| \leq \|f\|_1 \leq CK/y_0^{1/p-1}
\]

for a fixed \(y_0 < y \). Thus if we fix \(t < 0 \) and let \(y \to \infty \), we find \(\hat{f}(t) = 0 \). Hence \(\hat{f}(t) \) is identically zero on \((0, \infty)\) and by continuity it is zero at \(t = 0 \). Also note \(\hat{f}_y(t) = 0 \) on \((-\infty, 0)\).

As we have noted, \(\hat{f}(t) = f_y(t) e^{-\pi y} \), so \(\hat{f}_y(t) = \hat{f}(t) e^{-\pi y} = f_y(t) e^{\pi (y_0 - y)} \), and letting \(y_0 = y/2 \), we have

\[
\int_0^\infty |\hat{f}_y(t)| dt \leq \|f_y\|_1 \int_0^\infty e^{\pi (y_0 - y)} dt
\]

\[
\leq \frac{KC}{y_0^{1/p-1} (y - y_0)}
\]

\[
= \frac{2^{1/p} KC}{y^{1/p}}.
\]

Hence for \(y > 0 \), \(\hat{f}_y \) belongs to \(L^1(-\infty, \infty) \) and we can apply the inversion theorem [7], to find

\[
f(z) = f_y(x) = (2\pi)^{-1} \int_0^\infty \hat{f}_y(t) e^{itx} dt
\]

\[
= (2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{-\pi y} e^{itx} dt
\]

\[
= (2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{itx} dt.
\]

REFERENCES

Department of Mathematics, Le Moyne-Owen College, Memphis, Tennessee 38126