A combinatorial approach to the diagonal -representability problem

Author:
Mark Laurance Yoseloff

Journal:
Trans. Amer. Math. Soc. **190** (1974), 1-41

MSC:
Primary 81.47

DOI:
https://doi.org/10.1090/S0002-9947-1974-0337218-1

MathSciNet review:
0337218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem considered is that of the diagonal *N*-representability of a *p*th-order reduced density matrix, , for a system of *N* identical fermions or bosons. A finite number *M* of allowable single particle states is assumed. The problem is divided into three cases, namely: Case I. ; Case II. ; Case III. . Using the theory of polyhedral convex cones, a complete set of necessary and sufficient conditions is first found for Case I. This solution is then employed to find such conditions for Case II. For Case III, two algorithms are developed to generate solutions for the problem, and examples of the usage of these algorithms are given.

**[1]**M. Balinski, Ph.D. Thesis, Princeton University, Princeton, N. J., 1959.**[2]**A. J. Coleman,*Structure of fermion density matrices*, Rev. Modern Phys.**35**(1963), 668–689. MR**0155637**, https://doi.org/10.1103/RevModPhys.35.668**[3]**Ernest R. Davidson,*Linear inequalities for density matrices*, J. Mathematical Phys.**10**(1969), 725–734. MR**0245281**, https://doi.org/10.1063/1.1664899**[4]**David Gale,*The theory of linear economic models*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960. MR**0115801****[5]**Claude Garrod and Jerome K. Percus,*Reduction of the 𝑁-particle variational problem*, J. Mathematical Phys.**5**(1964), 1756–1776. MR**0170658**, https://doi.org/10.1063/1.1704098**[6]**A. J. Goldman and A. W. Tucker,*Polyhedral convex cones*, Linear equalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N. J., 1956, pp. 19–40. MR**0087974****[7]**Harold W. Kuhn,*Linear inequalities and the Pauli principle*, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 141–147. MR**0122378****[8]**Per-Olov Löwdin,*Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction*, Phys. Rev. (2)**97**(1955), 1474–1489. MR**0069061****[9]**R. McWeeny,*Some recent advances in density matrix theory*, Rev. Mod. Phys.**32**(1960), 335–369. MR**0112676****[10]**T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall,*The double description method*, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 51–73. MR**0060202****[11]**M. B. Ruskai, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969.**[12]**R. M. Thrall and L. Tornheim,*Vector spaces and matrices*, Wiley, New York, 1957. MR**19**, 241.**[13]**E. B. Wilson and F. Weinhold, J. Chem. Phys.**46**(1967), 2752.**[14]**-, J. Chem. Phys.**47**(1967), 2298.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
81.47

Retrieve articles in all journals with MSC: 81.47

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0337218-1

Article copyright:
© Copyright 1974
American Mathematical Society