Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conditions for a TVS to be homeomorphic with its countable product


Author: Wesley E. Terry
Journal: Trans. Amer. Math. Soc. 190 (1974), 233-242
MSC: Primary 46A15; Secondary 58B05
DOI: https://doi.org/10.1090/S0002-9947-1974-0338725-8
MathSciNet review: 0338725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: C. Bessaga has given conditions for a Banach space to be homeomorphic with its countable product. In this paper, we extend and generalize these results to complete metric topological vector spaces by using infinite dimensional techniques.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519. MR 32 #8298. MR 0190888 (32:8298)
  • [2] -, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67. MR 38 #6634. MR 0238358 (38:6634)
  • [3] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 37 #5847. MR 0230284 (37:5847)
  • [4] R. D. Anderson, D. W. Henderson and J. E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143-150. MR 39 #7630. MR 0246326 (39:7630)
  • [5] C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1964/65), 251-288. MR 31 #2580. MR 0178322 (31:2580)
  • [6] W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675. MR 40 #2133. MR 0248883 (40:2133)
  • [7] M. Eidelheit and S. Mazur, Eine Bemerkung über die Räume vom Typus (F), Studia Math. 7 (1938), 159-161.
  • [8] D. W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121-124. MR 40 #4976. MR 0251749 (40:4976)
  • [9] J. L. Kelley and I. Namioka, et al., Linear topological spaces, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1963. MR 29 #3851. MR 0166578 (29:3851)
  • [10] E. Michael, Convex structures and continuous selections, Canad. J. Math. 11 (1959), 556-575. MR 22 #230. MR 0109344 (22:230)
  • [11] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A15, 58B05

Retrieve articles in all journals with MSC: 46A15, 58B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0338725-8
Keywords: Topological vector space, countable product, infinite dimensional Fréchet space, Z-set, strongly negligible
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society