Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients


Author: Jean-Pierre Gossez
Journal: Trans. Amer. Math. Soc. 190 (1974), 163-205
MSC: Primary 35J65
DOI: https://doi.org/10.1090/S0002-9947-1974-0342854-2
MathSciNet review: 0342854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Variational boundary value problems for quasilinear elliptic systems in divergence form are studied in the case where the nonlinearities are nonpolynomial. Monotonicity methods are used to derive several existence theorems which generalize the basic results of Browder and Leray-Lions. Some features of the mappings of monotone type which arise here are that they act in nonreflexive Banach spaces, that they are unbounded and not everywhere defined, and that their inverse is also unbounded and not everywhere defined.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 115-175. MR 42 #5113. MR 0270222 (42:5113)
  • [3] F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874. MR 27 #6048. MR 0156116 (27:6048)
  • [4] -, Nonlinear elliptic functional equations in a nonreflexive Banach space, Bull. Amer. Math. Soc. 72 (1966), 89-95. MR 32 #2755. MR 0185287 (32:2755)
  • [5] -, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968), 89-113. MR 36 #6989. MR 0223942 (36:6989)
  • [6] -, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc., Providence, R.I. (to appear). MR 0405188 (53:8982)
  • [7] F. E. Browder, Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R.I., 1970, pp. 1-60. MR 42 #4855. MR 0269962 (42:4855)
  • [8] -, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc. 76 (1970), 999-1005. MR 41 #8818. MR 0264222 (41:8818)
  • [9] -, Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R.I., 1973, pp. 269-286. MR 0340815 (49:5565)
  • [10] -, Nonlinear elliptic eigenvalue problems with strong lower order nonlinearities, Rocky Mountain Math. J. (to appear).
  • [11] F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Functional Analysis 11 (1972), 251-294. MR 0365242 (51:1495)
  • [12] T. Donaldson, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations 10 (1971), 507-528. MR 0298472 (45:7524)
  • [13] T. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8 (1971), 52-75. MR 0301500 (46:658)
  • [14] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [15] A. Fougères, Opérateurs elliptiques du calcul des variations à coefficients très fortement non linéaires, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A763-A766.
  • [16] J.-P. Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl. 34 (1971), 371-395. MR 0313890 (47:2442)
  • [17] -, On the range of a coercive maximal monotone operator in a nonreflexive Banach space, Proc. Amer. Math. Soc. 35 (1972), 88-92. MR 0298492 (45:7544)
  • [18] -, On the subdifferential of a saddle function, J. Functional Analysis 11 (1972), 220-230. MR 0350416 (50:2908)
  • [19] -, Boundary value problems for quasilinear elliptic equations with rapidly increasing coefficients, Bull. Amer. Math. Soc. 78 (1972), 753-758. MR 0318669 (47:7216)
  • [20] A. Granas, Sur la notion de degré topologique pour une certains classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 191-194. MR 21 #7457. MR 0108743 (21:7457)
  • [21] -, Theorem on antipodes and theorems on fixed points for a certain class of multivalued mappings in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 271-275. MR 22 #8365. MR 0117588 (22:8365)
  • [22] P. Hess, On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl. 52 (1973), 13-26. MR 0636418 (58:30529)
  • [23] -, A strongly nonlinear elliptic boundary value problem, J. Math. Anal. Appl. (to appear). MR 0318670 (47:7217)
  • [24] M. Krasnosel'skiĭ and Ju. V. Rutickiĭ, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Internat. Monographs on Advanced Math. Phys., Hindustan, Delhi; Noordhoff, Groningen, 1961. MR 23 #A4016; MR 21 #5144. MR 0126722 (23:A4016)
  • [25] J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107. MR 33 #2939. MR 0194733 (33:2939)
  • [26] J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970. MR 34 #4875. MR 0205040 (34:4875)
  • [27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969. MR 41 #4326. MR 0259693 (41:4326)
  • [28] W. Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft, 1955. MR 17, 285. MR 0072440 (17:285a)
  • [29] W. Luxemburg and A. Zaanen, Conjugate spaces of Orlicz spaces, Nederl. Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 217-228. MR 17, 1113. MR 0077899 (17:1113c)
  • [30] G. J. Minty, Monotone (nonlinear) operators in a Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29 #6319. MR 0169064 (29:6319)
  • [31] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216. MR 41 #7432. MR 0262827 (41:7432)
  • [32] R. T. Rockafellar, Local boundedness of nonlinear monotone operators, Michigan Math. J. 16 (1969), 397-407. MR 40 #6229. MR 0253014 (40:6229)
  • [33] -, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88. MR 43 #7984. MR 0282272 (43:7984)
  • [34] M. I. Višik, Quasilinear strongly elliptic systems of differential equations in divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125-184 = Trans. Moscow Math. Soc. 1963, 140-208. MR 27 #6017. MR 0156085 (27:6017)
  • [35] -, Solvability of the first boundary value problem for quasilinear equations with rapidly increasing coefficients in Orlicz classes, Dokl. Akad. Nauk SSSR 151 (1963), 758-761 = Soviet Math. Dokl. 4 (1963), 1060-1064. MR 27 # 5032. MR 0155090 (27:5032)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65

Retrieve articles in all journals with MSC: 35J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0342854-2
Keywords: Quasilinear elliptic systems, nonpolynomial nonlinearities, existence theorems, nonlinear monotone mappings, nonlinear pseudomonotone mappings, Orlicz-Sobolev spaces, nonreflexive Banach spaces, complementary systems, noncoercive problems, local a priori bound
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society