Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Injective modules and localization in noncommutative Noetherian rings


Author: Arun Vinayak Jategaonkar
Journal: Trans. Amer. Math. Soc. 190 (1974), 109-123
MSC: Primary 16A08
DOI: https://doi.org/10.1090/S0002-9947-1974-0349727-X
MathSciNet review: 0349727
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{S}$ be a semiprime ideal in a right Noetherian ring R and $ \mathcal{C}(\mathfrak{S}) = \{ c \in R\vert[c + \mathfrak{S}$ regular in $ R/\mathfrak{S}\} $. We investigate the following two conditions:

$ ({\text{A}})\;\mathcal{C}(\mathfrak{S})$ is a right Ore set in R.

$ ({\text{B}})\;\mathcal{C}(\mathfrak{S})$ is a right Ore set in R and the right ideals of $ {R_{\mathfrak{S}}}$, the classical right quotient ring of R w.r.t. $ \mathcal{C}(\mathfrak{S})$ are closed in the $ J({R_{\mathfrak{S}}})$-adic topology.

The main results show that conditions (A) and (B) can be characterized in terms of the injective hull of the right R-module $ R/\mathfrak{S}$. The J-adic completion of a semilocal right Noetherian ring is also considered.


References [Enhancements On Off] (What's this?)

  • [1] C. Faith, Modules finite over endomorphism rings, Lectures on Rings and Modules, Lecture Notes in Math., vol. 246, Springer-Verlag, Berlin and New York, 1972. MR 0342541 (49:7287)
  • [2] A. W. Goldie, Localization in non-commutative Noetherian rings, J. Algebra 5 (1967), 89-105. MR 34 #7562. MR 0207747 (34:7562)
  • [3] -, The structure of Noetherian rings, Lectures on Rings and Modules, Lecture Notes in Math., vol. 246, Springer-Verlag, Berlin and New York, 1972. MR 0393118 (52:13928)
  • [4] O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47. MR 39 #6914. MR 0245608 (39:6914)
  • [5] A. V. Jategaonkar, A counterexample in ring theory and homological algebra, J. Algebra, 12 (1969), 418-440. MR 39 #1485. MR 0240131 (39:1485)
  • [6] A. V. Jategaonkar, Injective modules and classical localization in Noetherian rings, Bull. Amer. Math. Soc. 79 (1973), 152-157. MR 0311697 (47:259)
  • [7] -, The AR-property and localization in Noetherian rings, Notices Amer. Math. Soc. 19 (1972), A751. Abstract #72T-A274.
  • [8] -, The torsion theory at a semi-prime ideal (to appear).
  • [9] T. Kato, Rings of U-dimension $ \geq 1$, Tôhoku Math. J. (2) 21 (1969), 321-327. MR 40 #1423. MR 0248169 (40:1423)
  • [10] J. Lambek and G. O. Michler, The torsion theory at a prime ideal in a right Noetherian ring, J. Algebra 25 (1973), 364-389. MR 0316487 (47:5034)
  • [11] -, Completions and classical localizations of right Noetherian rings, Pacific J. Math. (to appear). MR 0332856 (48:11181)
  • [12] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528. MR 20 #5800. MR 0099360 (20:5800)
  • [13] J. C. McConnell, The Noetherian property in complete rings and modules, J. Algebra 12 (1969), 143-153. MR 39 #1487. MR 0240133 (39:1487)
  • [14] L. W. Small, Orders in Artinian rings, J. Algebra 4 (1966), 13-41. MR 34 #199. MR 0200300 (34:199)
  • [15] B. Stenström, Rings and modules of quotients, Lecture Notes in Math., vol. 237, Springer-Verlag, Berlin and New York, 1971. MR 0325663 (48:4010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A08

Retrieve articles in all journals with MSC: 16A08


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0349727-X
Keywords: Right Noetherian ring, localization at a semiprime ideal, classical localization, Ore set, AR-property, completion, injective modules
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society