Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Global dimension of tiled orders over commutative noetherian domains


Author: Vasanti A. Jategaonkar
Journal: Trans. Amer. Math. Soc. 190 (1974), 357-374
MSC: Primary 16A18
DOI: https://doi.org/10.1090/S0002-9947-1974-0354754-2
MathSciNet review: 0354754
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let R be a commutative noetherian domain and $ \Lambda = ({\Lambda _{ij}}) \subseteq {M_n}(R)$ be a tiled R-order. The main result of this paper is the following

Theorem. Let gl $ \dim R = d < \infty $ and $ \Lambda $ a triangular tiled R-order (i.e., $ {\Lambda _{ij}} = R$ whenever $ i \leq j$). Then the following three conditions are equivalent:

(1) gl $ \dim \Lambda < \infty $;

(2) $ {\Lambda _{i,i - 1}} = R$ or gl $ \dim \;(R/{\Lambda _{i,i - 1}}) < \infty $, whenever $ 2 \leq i \leq n$;

(3) gl $ \dim \Lambda \leq d(n - 1)$.

If $ d = 1$ or 2 then the upper bound in the above theorem is best possible. We give a sufficient condition for an arbitrary tiled R-order $ \Lambda $ to be of finite global dimension.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034. MR 0117252 (22:8034)
  • [2] H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [3] N. Bourbaki, Éléments de mathématique. XXIII. Part. 1. Les structures fondamentales de l'analyse. Livre II: Algébre. Chap. 8: Modules et anneaux semi-simples, Actualités Sci. Indust., no. 1261, Hermann, Paris, 1958. MR 20 #4576. MR 0098114 (20:4576)
  • [4] K. L. Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345-349. MR 42 #6049. MR 0271166 (42:6049)
  • [5] Manabu Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17-27. MR 18, 375. MR 0081269 (18:375d)
  • [6] N. Jacobson, Structure of rings, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 36 #5158. MR 0222106 (36:5158)
  • [7] A. V. Jategaonkar, Unpublished Lecture Notes, Cornell University, Ithaca, N. Y., 1971.
  • [8] Vasanti A. Jategaonkar, Global dimension of triangular orders over DVR, Notices Amer. Math. Soc. 18 (1971), 626. Abstract #71T-A106.
  • [9] -, Global dimension of triangular orders over a discrete valuation ring, Proc Amer. Math. Soc. 38 (1973), 8-14. MR 0309988 (46:9091)
  • [10] -, Tiled orders, Thesis, Cornell University, Ithaca, N. Y., 1973.
  • [11] Irving Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, I11., 1969. MR 42 #4345. MR 0269449 (42:4345)
  • [12] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [13] Bruno J. Mueller, On semiperfect rings, Illinois J. Math. 14 (1970), 464-467. MR 41 #6909. MR 0262299 (41:6909)
  • [14] Joseph J. Rotman, Notes on homological algebra, Van Nostrand Reinhold, New York, 1968. MR 0409590 (53:13342)
  • [15] L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76. MR 36 #205. MR 0217114 (36:205)
  • [16] L. W. Small, A change of rings theorem, Proc. Amer. Math. Soc. 19 (1968), 662-666. MR 36 #6460. MR 0223412 (36:6460)
  • [17] R. B. Tarsey, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340. MR 0268226 (42:3125)
  • [18] -, Global dimension of triangular orders, Proc. Amer. Math. Soc. 28 (1971), 423-426. MR 0274527 (43:290)
  • [19] O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006. MR 0120249 (22:11006)
  • [20] M. Ramaras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457-479. MR 0245572 (39:6878)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A18

Retrieve articles in all journals with MSC: 16A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0354754-2
Keywords: Orders, tiled orders over commutative noetherian domains, global dimension, regular local rings
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society