Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Convolution operators on $ G$-holomorphic functions in infinite dimensions

Authors: Philip J. Boland and Seán Dineen
Journal: Trans. Amer. Math. Soc. 190 (1974), 313-323
MSC: Primary 46G20; Secondary 47B37
MathSciNet review: 0407599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a complex vector space E, let $ {H_G}(E)$ denote the space of G (Gateaux)-holomorphic functions on $ E\;(f:E \to C$ is G-holomorphic if the restriction of f to every finite dimensional subspace of E is holomorphic in the usual sense). The most natural topology on $ {H_G}(E)$ is that of uniform convergence on finite dimensional compact subsets of E. A convolution operator A on $ {H_G}(E)$ is a continuous linear mapping $ A:{H_G}(E) \to {H_G}(E)$ such that A commutes with translations. The concept of a convolution operator generalizes that of a differential operator with constant coefficients. We prove that if A is a convolution operator on $ {H_G}(E)$, then the kernel of A is the closed linear span of the exponential polynomials contained in the kernel. In addition, we show that any nonzero convolution operator on $ {H_G}(E)$ is a surjective mapping.

References [Enhancements On Off] (What's this?)

  • [1] Jorge Alberto Barroso, Topologies in spaces of holomorphic mappings between locally convex spaces, An. Acad. Brasil. Ci. 43 (1971), 527–546 (Portuguese). MR 0308760
  • [2] Philip J. Boland, Espaces pondérés de fonctions entières et de fonctions entières nucléaires sur un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A587–A590. MR 0407598
  • [3] -, Some spaces of entire and nuclearly entire functions on a Banach space, J. Reine Angew. Math. (to appear in two parts).
  • [4] Seán Dineen, Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on \cal𝐻(𝑈), Ann. Inst. Fourier (Grenoble) 23 (1973), no. 1, 19–54 (English, with French summary). MR 0500153
  • [5] C. P. Gupta, Convolution operators and holomorphic mappings on a Banach space, Séminaire d'Analyse Moderne, no. 2, Université de Sherbrooke.
  • [6] Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 271–355 (French). MR 0086990
  • [7] Leopoldo Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag New York Inc., New York, 1969. MR 0254579
  • [8] B. A. Taylor, The fields of quotients of some rings of entire functions, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 468–474. MR 0240329

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46G20, 47B37

Retrieve articles in all journals with MSC: 46G20, 47B37

Additional Information

Keywords: Convolution operator, G (Gateaux)-holomorphic function, weighted space of G (Gateaux)-holomorphic functions, exponential-polynomial, Borel transform
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society