Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Complex approximation for vector-valued functions with an application to boundary behaviour


Authors: Leon Brown, P. M. Gauthier and W. Seidel
Journal: Trans. Amer. Math. Soc. 191 (1974), 149-163
MSC: Primary 30A82
DOI: https://doi.org/10.1090/S0002-9947-1974-0342707-X
MathSciNet review: 0342707
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the qualitative theory of uniform approximation by holomorphic functions. The first theorem is an extension to vector-valued mappings of N. U. Arakélian's theorem on uniform holomorphic approximation on closed sets. Our second theorem is on asymptotic approximation and yields, as in the scalar case, applications to cluster sets.


References [Enhancements On Off] (What's this?)

  • [1] N. U. Arakeljan, Uniform approximation on closed sets by entire functions, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1187–1206 (Russian). MR 0170017
  • [2] N. U. Arakeljan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), no. 4-5, 273–286 (Russian, with Armenian and English summaries). MR 0274770
  • [3] N. U. Arakeljan, Approximation complexe et propriétés des fonctions analytiques, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 595–600 (French). MR 0422623
  • [4] F. Bagemihl and W. Seidel, Spiral and other asymptotic paths, and paths of complete indetermination, of analytic and meromorphic functions, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1251–1258. MR 0059352
  • [5] E. Briem, K. B. Laursen, and N. W. Pedersen, Mergelyan’s theorem for vector-valued functions with an application to slice algebras, Studia Math. 35 (1970), 221–226. MR 0278074
  • [6] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 0044116
  • [7] Wolfgang H. J. Fuchs, Théorie de l’approximation des fonctions d’une variable complexe, Séminaire de Mathématiques Supérieures, No. 26 (Été, 1967), Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). MR 0261010
  • [8] P. Gauthier and W. Seidel, Some applications of Arakélian’s approximation theorems to the theory of cluster sets, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 6, 458–464 (English, with Armenian and Russian summaries). MR 0302919
  • [9] P. M. Gauthier and W. Hengartner, Uniform approximation on closed sets by functions analytic on a Riemann surface, Approximation theory (Proc. Conf. Inst. Math., Adam Mickiewicz Univ., Poznań, 1972) Reidel, Dordrecht, 1975, pp. 63–69. MR 0486540
  • [10] Wilfred Kaplan, Approximation by entire functions, Michigan Math. J. 3 (1955), 43–52. MR 0070753
  • [11] S. N. Mergelyan, Uniform approximations of functions of a complex variable, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 31–122 (Russian). MR 0051921
  • [12] A. A. Nersesjan, Carleman sets, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 6, 465–471 (Russian, with Armenian and English summaries). MR 0301209
  • [13] W. Rudin, Radial cluster sets of analytic functions, Bull. Amer. Math. Soc. 60 (1954), 545.
  • [14] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A82

Retrieve articles in all journals with MSC: 30A82


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0342707-X
Article copyright: © Copyright 1974 American Mathematical Society