Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational approximation on product sets


Author: Otto B. Bekken
Journal: Trans. Amer. Math. Soc. 191 (1974), 301-316
MSC: Primary 32E30; Secondary 46J10
DOI: https://doi.org/10.1090/S0002-9947-1974-0379900-6
MathSciNet review: 0379900
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Our object here is to study pointwise bounded limits, decomposition of orthogonal measures and distance estimates for $ R({K_1} \times {K_2})$ where $ {K_1}$ and $ {K_2}$ are compact sets in the complex plane.


References [Enhancements On Off] (What's this?)

  • [1] O. B. Bekken, Products of algebras on plane sets, U.C.L.A. Thesis, 1972.
  • [2] A. Browder, Point derivations on function algebras, J. Functional Analysis 1 (1967), 22-27. MR 35 #2144. MR 0211262 (35:2144)
  • [3] B. Cole and R. M. Range, A-measures on complex manifolds and some applications, J. Functional Analysis 11 (1972), 393-400. MR 0340646 (49:5398)
  • [4] A. M. Davie, Bounded limits of analytic functions, Proc. Amer. Math. Soc. 32 (1972), 127-133. MR 0293069 (45:2148)
  • [5] A. M. Davie, T. W. Gamelin and J. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68. MR 0313514 (47:2068)
  • [6] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. MR 0410387 (53:14137)
  • [7] T. W. Gamelin and J. Garnett, Constructive techniques in rational approximation, Trans. Amer. Math. Soc. 143 (1969), 187-200. MR 40 #2882. MR 0249639 (40:2882)
  • [8] -, Bounded approximation by rational functions (to appear).
  • [9] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR Sb. 7 (1969), 597-616. MR 40 #2902. MR 0249660 (40:2902)
  • [10] D. Sarason, Generalized interpolation in $ {H^\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179-203. MR 34 #8193. MR 0208383 (34:8193)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32E30, 46J10

Retrieve articles in all journals with MSC: 32E30, 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0379900-6
Keywords: Pointwise bounded approximation, rational functions, orthogonal measures, Vitushkin techniques, weak-star closure in $ {L^\infty }(\sigma )$
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society