Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Norm inequalities for the Littlewood-Paley function $ g\sp{\ast} \sb{\lambda }$


Authors: Benjamin Muckenhoupt and Richard L. Wheeden
Journal: Trans. Amer. Math. Soc. 191 (1974), 95-111
MSC: Primary 44A15; Secondary 30A78, 42A92
DOI: https://doi.org/10.1090/S0002-9947-1974-0387973-X
MathSciNet review: 0387973
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted norm inequalities for $ {L^p}$ and $ {H^p}$ are derived for the Littlewood-Paley function $ g_\lambda ^ \ast $. New results concerning the boundedness of this function are obtained, by a different method of proof, even in the unweighted case. The proof exhibits a connection between $ g_\lambda ^\ast$ and a maximal function for harmonic functions which was introduced by C. Fefferman and E. M. Stein. A new and simpler way to determine the behavior of this maximal function is given.


References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838-2839. MR 0303226 (46:2364)
  • [2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. (to appear). MR 0358205 (50:10670)
  • [3] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 41 #2468. MR 0257819 (41:2468)
  • [4] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [5] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1973), 101-118. MR 0352854 (50:5340)
  • [6] R. A. Hunt, B. Muckenhoupt, and R. L. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 0312139 (47:701)
  • [7] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 45 #2461. MR 0293384 (45:2461)
  • [8] -, The equivalence of two conditions for weight functions, Studia Math. 49 (1973), 95-100. MR 0350297 (50:2790)
  • [9] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. (to appear). MR 0285938 (44:3155)
  • [10] M. Rosenblum, Summability of Fourier series in $ {L^p}(d\mu )$, Trans. Amer. Math. Soc. 105 (1962), 32-42. MR 28 #3287. MR 0160073 (28:3287)
  • [11] C. Segovia and R. L. Wheeden, On the function $ g_\lambda ^ \ast $ and the heat equation, Studia Math. 37 (1970), 57-93. MR 44 #3124. MR 0285907 (44:3124)
  • [12] E. M. Stein, A maximal function with applications to Fourier series, Ann. of Math. (2) 68 (1958), 584-603. MR 20 #6630. MR 0100197 (20:6630)
  • [13] -, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 23 #A2695. MR 0125392 (23:A2695)
  • [14] -, Singular integrals and differentiability properties of functions, Princeton Math. Series, no. 30, Princeton Univ. Press, Princeton, N.J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [15] A. Zygmund, On the Littlewood-Paley function $ {g^ \ast }(\theta )$, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 208-212. MR 17, 1080. MR 0077700 (17:1080a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A15, 30A78, 42A92

Retrieve articles in all journals with MSC: 44A15, 30A78, 42A92


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0387973-X
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society