The Fredholm Spectrum of the Sum and Product of Two Operators

By

Jack Shapiro and Morris Snow(1)

Abstract. Let \(\mathcal{C}(X) \) denote the set of closed operators with dense domain on a Banach space \(X \), and \(L(X) \) the set of all bounded linear operators on \(X \). Let \(\Phi(X) \) denote the set of all Fredholm operators on \(X \), and \(\sigma_\Phi(A) \) the set of all complex numbers \(\lambda \) such that \((\lambda - A) \notin \Phi(X) \). In this paper we establish conditions under which \(\sigma_\Phi(A + B) \subseteq \sigma_\Phi(A) + \sigma_\Phi(B) \), \(\sigma_\Phi(AB) \subseteq \sigma_\Phi(A) \cdot \sigma_\Phi(B) \), and \(\sigma_\Phi(AB) \subseteq \sigma_\Phi(A) \sigma_\Phi(B) \).

In this paper we will use the operational calculus developed in [3] to establish a property of the Fredholm spectrum of the sum and product of two operators.

Definition 1. A closed operator \(A \) from a Banach space \(X \) to a Banach space \(Y \) is called a Fredholm operator if:

1. the domain of \(A, D(A) \), is dense in \(X \).
2. \(\alpha(A) = \dim [N(A)] < \infty \).
3. \(R(A) \), the range of \(A \), is closed in \(Y \).
4. \(\beta(A) \), the codimension of \(R(A) \) in \(Y \), is finite.

It is shown in [1, Lemma 332] that condition (4) implies condition (3). A discussion of Fredholm operators can be found in [2].

We denote the set of Fredholm operators from \(X \) to \(Y \) by \(\Phi(X) \).

Definition 2. \(\lambda \in \Phi_A \) if and only if \((\lambda - A) \notin \Phi(X) \).

Definition 3. \(\lambda \in \sigma_\Phi(A) \) if and only if \(\lambda \notin \Phi_A \).

Definition 4. A bounded operator \(B \) will be called a quasi-inverse of the closed operator \(A \) if:

1. \(R(B) \subseteq D(A) \) and \(AB = I + K_1 \), \(K_1 \in \mathcal{K}(X) \).
2. \(BA = I + K_2 \), \(K_2 \in \mathcal{K}(X) \).

\(\mathcal{K}(X) \) denotes the set of all compact operators on \(X \).

AMS (MOS) subject classifications (1970). Primary 47B30; Secondary 47A60, 47B05.

Key words and phrases. Fredholm operator, Fredholm spectrum, operational calculus.

(1) This research was partially funded by a Faculty Research Award Program grant, from the City University of New York.

Copyright © 1974, American Mathematical Society

387
By [2, Theorem 2.9], Φ_A is open and is thus the union of a disjoint collection of connected open sets. Each such set, $\Phi_i(A)$, will be called a component of Φ_A.

Let $C(X)$ denote the set of closed operators on X with dense domain.

Suppose $A \in C(X)$ with Φ_A not empty, and let $\lambda \in \Phi_A$. In [3], a quasi-inverse of $\lambda - A$, $R_i^\prime(A)$, was constructed in the following way. In each $\Phi_i(A)$, a fixed point, λ_i, is chosen in a prescribed manner. There exist subspaces, X_i and Y_i such that $X = N(\lambda_i - A) \oplus X_i$, X_i is closed, and $X = Y_i \oplus R(\lambda_i - A)$.

Let F_{1i} be the projection of X onto $N(\lambda_i - A)$ along X_i, and let F_{2i} be the projection of X onto Y_i along $R(\lambda_i - A)$. F_{1i} and F_{2i} are bounded finite rank operators. F_{1i} has a bounded inverse, $A_i F_{1i} = R(\lambda_i - A)$ along X_i.

Let the operator T_i be defined by: $T_i x = A_i (I - F_{2i}) x$. T_i is a quasi-inverse of $(\lambda_i - A)$.

$R_i^\prime(A)$ is then defined by $R_i^\prime(A) = T_i [(\lambda - \lambda_i) T_i + I]^{-1}$ when $\lambda \in \Phi_i(A)$ and $-1/(\lambda - \lambda_i) \in \rho(T_i)$. In [3, Theorems 2 and 5, §2], $R_i^\prime(A)$ is shown to be a quasi-inverse of $(\lambda - A)$ defined and analytic for all $\lambda \in \Phi_A$ except for at most an isolated set, $\Phi_0(A)$, having no accumulation point in Φ_A.

Lemma 1.1. Let n be a positive integer and $A \in C(X)$ such that Φ_A is not empty. Then for each $\lambda \in \{\Phi_A \setminus \Phi_0(A)\}$, there exists a subspace V_λ, dense in X and depending on λ, such that $\forall x \in V_\lambda$, $R_i^\prime(A) x \in D(A^n)$.

Proof. Let $\lambda \in \{\Phi_A \setminus \Phi_0(A)\}$. By [2, Theorem 2.5], $D(A^n) = D(\lambda - A)^n$ is dense in X for all n. Therefore, $T_i^{-1}D(A^n) \cap R(A) = D(A^n - 1) \cap R(A)$ is dense in $R(A)$. By $T_i^{-1}D(A^n)$ we mean $\{x | T_i x \in D(A^n)\}$. Let Y_i be the complement of $R(A)$ used in the construction of T_i. Since $T_i Y_i \rightarrow 0 \in D(A^n)$ and $X = R(A) + Y_i$, we have $T_i^{-1}D(A^n) = T_i^{-1}D(A^n) \cap R(A) \oplus Y_i$ is dense in X.

Therefore, $V_\lambda = [(\lambda - \lambda_i) T_i + I]T_i^{-1}D(A^n)$ is dense in X because $[(\lambda - \lambda_i) T_i + I]$ is invertible. Q.E.D.

We denote the set of all bounded operators on X by $L(X)$.

Lemma 1.2. Let $A \in \Phi(X)$, $B \in L(X)$, and $K \in K(X)$. Suppose $AB|_V = K|_V$ where V is a dense subspace of X. Then $B \in K(X)$.

Proof. There exists $A_0 \in L(X)$ such that $A_0 A = I - K_1$, $K_1 \in K(X)$.

$$A_0 AB|_V = A_0 B|_V \quad (I - K_1) B|_V = K_2|_V \quad B|_V = (K_1 + K_2)|_V.$$ Since B and $(K_1 B + K_2)$ are bounded, and V is dense, we have $B = K_1 B + K_2$ by continuity. Q.E.D.

Lemma 1.3. Let $B \in L(X)$, $A \in C(X)$, $\mu \in \{\Phi_B \setminus \Phi_0(B)\}$ and $\lambda \in \{\Phi_A \setminus \Phi_0(A)\}$. Let there exist a positive integer n and a compact operator K_1, such that
B: \(D(\mathbb{A}^n) \to D(\mathbb{A}) \) and \(ABx = BAx + Kx \), \(\forall x \in D(\mathbb{A}^n) \). Then there exists a compact operator \(K \), depending analytically on \(\lambda \) and \(\mu \), such that

\[
R^\lambda_\mu(A)R^\mu_\lambda(B) = R^\mu_\lambda(B)R^\lambda_\mu(A) + K.
\]

Proof. By Lemma 1.1 there exists a subspace \(V_\lambda \), dense in \(X \), such that \(\forall x \in V_\lambda, R^\lambda_\lambda(A)x \in D(\mathbb{A}^n) \). Let \(x \in V_\lambda \).

\[
(\lambda - A)BR^\lambda_\lambda(A)x = [B(\lambda - A) - K]R^\lambda_\lambda(A)x
\]

\[
= [B(I - K) + K_\lambda]x
\]

\[
= Bx + K_\lambda x.
\]

Therefore, \((\lambda - A)[BR^\lambda_\lambda(A) - R^\lambda_\lambda(A)B]x = K_\lambda x \). Since this equality holds for all \(x \in V_\lambda \), we have by Lemma 1.2, that \(BR^\lambda_\lambda(A) - R^\lambda_\lambda(A)B = K \), and \(BR^\lambda_\lambda(A) = R^\lambda_\lambda(A)B + K \), \(K \in \mathbb{K}(X) \) for \(i = 1, 2, \ldots, 6 \).

\[
(\mu - B)[R^\mu_\lambda(B)R^\lambda_\lambda(A) - R^\lambda_\lambda(A)R^\mu_\lambda(B)] = (I - K_\lambda)R^\lambda_\lambda(A) - (\mu - B)R^\lambda_\lambda(A)R^\mu_\lambda(B)
\]

\[
= R^\lambda_\lambda(A) + K_\mu - R^\lambda_\lambda(A)(I - K_\lambda) + K_\mu = K_{10}.
\]

Therefore, \(R^\mu_\lambda(B)R^\lambda_\lambda(A) - R^\lambda_\lambda(A)R^\mu_\lambda(B) = K \), and \(R^\mu_\lambda(B)R^\lambda_\lambda(A) = R^\lambda_\lambda(A)R^\mu_\lambda(B) + K \), \(K \in \mathbb{K}(X) \) for \(i = 7, 8, 9, 10 \). The analyticity of \(K \) in \(\lambda \) and \(\mu \) follows from the analyticity of \(R^\mu_\lambda(B) \) and \(R^\lambda_\lambda(A) \).

Theorem 1. Let \(B \in L(X) \) and \(A \in C(X) \). Suppose there exist a positive integer \(n \) and a compact operator \(K \) such that \(B: D(\mathbb{A}^n) \to D(\mathbb{A}) \) and \(ABx = Bx + Kx \) for all \(x \in D(\mathbb{A}^n) \). Then \(\sigma_\alpha(A + B) \subseteq \sigma_\alpha(A) + \sigma_\alpha(B) \). If \(\sigma_\alpha(A) \) is empty, we interpret \(\sigma_\alpha(A) + \sigma_\alpha(B) \) to be the empty set.

Proof. If \(\sigma_\alpha(A) + \sigma_\alpha(B) \) is the entire complex plane, then the theorem is trivially true. We therefore assume that \(\sigma_\alpha(A) + \sigma_\alpha(B) \) is not the entire plane.

Let \(y \) be a fixed point not contained in \(\sigma_\alpha(A) + \sigma_\alpha(B) \). We shall show that \(y \in \Phi(A + B) \). If \(\lambda \in \sigma_\alpha(B) \), then \((y - \lambda) \in \Phi_\lambda \). Since \(\sigma_\alpha(A) \) is closed and \(\sigma_\alpha(B) \) is compact, there exists an open set \(U \supset \sigma_\alpha(B) \) such that \(\Phi(U) \), the boundary of \(U \), is bounded, and when \(\lambda \in U \), \((y - \lambda) \in \Phi_\lambda \). Let \(A_1 = y - A \). \(\Phi_\lambda \) if and only if \(\lambda \in \Phi_{A_1} \). Therefore, \(\sigma_\alpha(B) \subseteq U \subseteq \Phi_{A_1} \). There exists a bounded Cauchy domain \(D \) such that \(\sigma_\alpha(B) \subseteq D \subseteq U \). See [4, Theorem 3.3]. Since \(\Phi_{A_1} \) does not accumulate in \(\Phi_{A_1} \) and \(\Phi_0(B) \) does not accumulate in \(\Phi_B \), \(D \) can be chosen so that \(R^\lambda_\mu(A) \) and \(R^\mu_\lambda(B) \) are analytic on \(B(D) \), the boundary of \(D \).

Define the operators \(S_1 \) and \(S_2 \) by

\[
S_1 = -\frac{1}{2\pi i} \int_{B(D)} R^\mu_\lambda(A)R^\mu_\lambda(B) d\lambda,
\]
and

\[S_2 = -\frac{1}{2\pi i} \int_{+B(D)} R_{\lambda}'(B) R_{\lambda}'(A_1) \, d\lambda. \]

\(R_{\lambda}'(A_1) \) is of the form \(TC(\lambda) \), where \(C(\lambda) \) is bounded operator valued analytic function of \(\lambda \) and \(T \) is a fixed bounded operator such that \(T: X \to D(A_1) = D(A) \).

Therefore, \(S_1: X \to D(A) \).

We will now show that there exist compact operators \(K_1 \) and \(K_2 \) such that

\[(y - B - A)S_1 = I + K_1 \quad \text{and} \quad S_2(y - B - A) = (I + K_2)|_{D(A)}. \]

\[y - B - A = (y - \lambda - A) + (\lambda - B) = -(\lambda - A_1) + (\lambda - B). \]

\[(y - B - A)S_1 = -\frac{1}{2\pi i} \int_{+B(D)} (\lambda - B) R_{\lambda}'(A_1) R_{\lambda}'(B) \, d\lambda. \]

Since \((\lambda - A_1)R_{\lambda}'(A_1) \) is of the form \(I + F(\lambda) \) where \(F(\lambda) \) is a bounded finite rank operator depending analytically on \(\lambda \) and \((2\pi i)^{-1} \int_{+B(D)} R_{\lambda}'(B) \, d\lambda \) is of the form \(I + K_3 \), see \([3, \text{Theorem 13, \S 2}] \), the first integral is of the form \(I + K_4 \).

By Lemma 1.3, there exists a compact operator \(K(\lambda) \), depending analytically on \(\lambda \), such that \(R_{\lambda}'(A_1)R_{\lambda}'(B) = R_{\lambda}(B)R_{\lambda}'(A_1) + K(\lambda) \). Therefore, the second integral is equal to

\[\frac{-1}{2\pi i} \int_{+B(D)} (\lambda - B) R_{\lambda}'(B) R_{\lambda}'(A_1) \, d\lambda = \frac{1}{2\pi i} \int_{+B(D)} (\lambda - B) K(\lambda) \, d\lambda. \]

The first of these two integrals equals \(\int_{+B(D)} R_{\lambda}'(A_1) \, d\lambda + K_5^* \). \(K_5 \in \mathbb{K}(X) \). As in \([3, \text{proof of Theorem 10, \S 2}] \), \(\int_{+B(D)} R_{\lambda}'(A) \, d\lambda \) is compact. Since \((2\pi i)^{-1} \int_{+B(D)} (\lambda - B) K(\lambda) \, d\lambda \) is also compact, we have that \((y - B - A)S_1 = I + K_1^*, K_1 \in \mathbb{K}(X) \).

By a similar argument we have that \(S_2(y - B - A) = I + K_2 \). \(K_2 \in \mathbb{K}(X) \). Therefore, by \([2, \text{Lemma 2.4}] \), \((y - B - A) \in \Phi(X) \) and, thus, \(y \in \Phi(A + B) \). Therefore, \(\sigma(\Phi(A + B)) \subset \sigma(\Phi(A)) + \sigma(\Phi(B)) \). This completes the proof of the theorem.

Theorem 2. Let \(A \in C(X) \) and \(B \in L(X) \cap \Phi(X) \). Let \(B: D(A) \to D(A) \) and let there exist a compact operator \(K \) such that \(BAx = ABx + Kx \), \(\forall x \in D(A) \). Then \(BA \) is preclosed and

1. \(\sigma^b(AB) \subset \sigma^b(A) \sigma^b(B) \), and
2. \(\sigma^b(AB) \subset \sigma^b(A) \sigma^b(B) \).

Proof. Since \((AB)|_{D(A)} \) is preclosed and \(K \) is bounded, we have that \(BA \) is preclosed.

Let \(\mathbb{C} \) denote the set of all complex numbers. Since \(0 \notin \sigma^b(B) \) and \(\sigma^b(B) \)
is not empty, we have that if \(\sigma_0(A) = C \) then \(\sigma_0(B)\sigma_0(A) = C \), and the lemma is established. We therefore assume that \(\sigma_0(A) \neq C \).

Suppose \(\gamma \) is a fixed point not in \(\sigma_0(B)\sigma_0(A) \). We proceed to show that \(\gamma \in \Phi(BA) \).

Since \(\sigma_0(A) \) is closed, \(\sigma_0(B) \) is compact, and \(0 \notin \sigma_0(B) \), there exists an open set \(U \supset \sigma_0(B) \) such that \(0 \notin U, B(U) \), the boundary of \(U \), is bounded, and \((y - \mu A) \in \Phi(X) \) \(\forall \mu \in U \). Let \(D \) be a bounded Cauchy domain such that \(\sigma_0(B) \subset D \subset U \). \((y - \mu A) = \mu y (1/\mu - (1/\gamma)A) = (y/\lambda) (\lambda - (1/\gamma)A) \), where \(\lambda = 1/\mu \).

Let \(D' \) be the image of \(D \) under the map \(\lambda = 1/\mu \). Let \(A_1 = (1/\gamma)A \). Since \(\forall \mu \in D, 1/\mu \in \Phi_{A_1} \), and since \(R_\lambda(A_1) \) is analytic in \(\lambda \) throughout \(\Phi_{A_1} \), except for at most an isolated set having no accumulation point in \(\Phi_{A_1} \), we can assume that \(R_\lambda(A_1) \) is analytic in \(\lambda \) on \(B(D') \). Note. \(R_\lambda(A_1) \) is of the form \(TC(\lambda) \) where \(C(\lambda) \) is an analytic operator valued function of \(\lambda \) and \(T \) is a bounded operator such that \(R(T) \subset D(A_1) = D(A) \).

Let

\[
S_1 = \frac{1}{2\pi i} \int_{\partial B(D')} \frac{-1}{\gamma \lambda} R_\lambda'(A_1) R_\lambda'(B) d\lambda
\]

and

\[
S_2 = \frac{1}{2\pi i} \int_{\partial B(D')} \frac{-1}{\gamma \lambda} R_\lambda'(B) R_\lambda'(A_1) d\lambda.
\]

Since \(R(S_1) \subset D(A) \), \((y - BA) S_1 \) is defined, and \((y - BA) S_1 = (y - BA) S_1 \).

\[
y - BA = y - BYA_1 = y(I - BA_1)
\]

\[
= yB(\lambda - A_1) - y\lambda B + yI = yB(\lambda - A_1) + y(I - \lambda B).
\]

Therefore,

\[
(y - BA) S_1 = \frac{1}{2\pi i} \int_{\partial B(D')} \frac{-1}{\gamma \lambda} B(\lambda - A_1) R_\lambda'(A_1) R_\lambda'(B) d\lambda
\]

\[
- \frac{1}{2\pi i} \int_{\partial B(D')} (1/\gamma - B) R_\lambda'(A_1) R_\lambda'(B) d\lambda
\]

\[
= \frac{1}{2\pi i} \int_{\partial B(D')} \frac{-1}{\gamma \lambda} B[I + K_1(\lambda)] R_\lambda'(B) d\lambda
\]

\[
- \frac{1}{2\pi i} \int_{\partial B(D')} (1/\gamma - B)[R_\lambda'(B) R_\lambda'(A_1) + K_2(\lambda)] d\lambda
\]

\[
= \frac{1}{2\pi i} \int_{\partial B(D')} \frac{-1}{\gamma \lambda} B R_\lambda'(B) d\lambda + K_3
\]

\[
- \frac{1}{2\pi i} \int_{\partial B(D')} [I + K_3(\lambda)] R_\lambda'(A_1) d\lambda + K_5
\]

\[
= \frac{1}{2\pi i} \int_{\partial B(D')} \frac{1}{\mu} B R_\lambda'(B) d\mu + K_3 - \frac{1}{2\pi i} \int_{\partial B(D')} R_\lambda'(A_1) d\lambda + K_6.
\]
Since \(0 \notin D \), we have
\[
\frac{1}{2\pi i} \int_{D'} \frac{1}{\mu} \mathcal{R}'(B) \, d\mu = B \frac{1}{2\pi i} \int_{D} \frac{1}{\mu} \mathcal{R}'(B) \, d\mu = I + K_7
\]
by [3, Theorems 14, 9 and 13, \S 2].

Since \(\mathcal{R}'(A_1) \) is analytic in \(D' \) except for at most a finite number of points, we have that \((2\pi i)^{-1} \int_{D'} \mathcal{R}'(A_1) \, d\lambda = K_8 \) by [3, Lemma 7.4, \S 2]. Therefore, \((y - B\overline{A})S_1 = I + K', \ K', \ K_i (\lambda) \in \mathcal{K}(x) \) for \(i = 1, 2, \ldots, 8 \).

Claim. \(D(\overline{B}A) \subseteq D(AB) \) and \(\overline{BA}x = ABx + Kx \ \forall x \in D(\overline{B}A) \).

Proof. Let \(x \in D(\overline{B}A) \). Then there exists a sequence, \(\{x_n\}_{n=1}^\infty \), such that \(x_n \in D(A) \), \(x_n \to x \) as \(n \to \infty \), and \(ABx_n \to \overline{BA}x \) as \(n \to \infty \). Therefore
\[
\lim_{n \to \infty} ABx_n = \lim_{n \to \infty} BAX_n - \lim_{n \to \infty} Kx_n = \overline{BA}x - Kx.
\]
Therefore, \(Bx \in D(A) \) and \(ABx = \lim_{n \to \infty} ABx_n = \overline{BA}x - Kx \).

\[
y - BA = B(\lambda - A_1) + y(I - \lambda B) = (y - A_1)B + y(I - \lambda B) + K_9.
\]

\[
S_2(y - BA) = \frac{1}{2\pi i} \int_{D'} \frac{-1}{\gamma^2} \mathcal{R}'(B) \frac{1}{\mathcal{R}_\lambda'(A_1)} \, d\lambda \left[(y - A_1)B + y(I - \lambda B) + K_9 \right]
\]

\[
= \frac{1}{2\pi i} \int_{D'} \frac{-1}{\gamma^2} \mathcal{R}'(B)[I + K_10(\lambda)]B \, d\lambda
\]

\[
+ \frac{1}{2\pi i} \int_{D'} \frac{-1}{\gamma^2} \mathcal{R}'(A_1) \mathcal{R}_\lambda'(B) - K_2(\lambda)[y(I - \lambda B) + K_9] \, d\lambda
\]

\[
= \left[\frac{1}{2\pi i} \int_{D} \frac{1}{\mu} \mathcal{R}'(B) \, d\mu \right] B + K_{11}
\]

\[
+ \frac{1}{2\pi i} \int_{D'} (-1) \mathcal{R}_\lambda'(A_1) \mathcal{R}_\lambda'(B)(1/\lambda - B) \, d\lambda + K_{12}
\]

\[
= I + K_{13} + \frac{1}{2\pi i} \int_{D'} (-1) \mathcal{R}_\lambda'(A_1) [I + K_{14}(\lambda)] \, d\lambda
\]

\[
= I + K_{15},
\]

\(K_i, K_\lambda(\lambda) \in \mathcal{K}(x) \) for \(i = 9, 10, \ldots, 14 \).

Therefore \((y - BA) \in \Phi(x) \) by [2, Lemma 2.4]. This completes the proof that \(\sigma_\Phi(\overline{B}A) \subseteq \sigma_\Phi(B) \sigma_\Phi(A) \).

To show that \(\sigma_\Phi(AB) \subseteq \sigma_\Phi(B) \sigma_\Phi(A) \) we proceed to show that \((y - AB) \in \Phi(x) \).

Let \(S_1 \) and \(S_2 \) be as above. Since \(R(S_1) \subseteq D(A) \) and \(ABx = BAX - Kx, \ \forall x \in D(A) \), we have that \((y - AB)S_1 = (y - BA)S_1 + K_{15} = I + K' + K_{15} = I + K_{16} \).

\[
S_2(y - AB) = S_2[y(\lambda - A_1)B + y(I - \lambda B)]
\]

\[
= I + K_{17}, \quad K_{15}, K_{16}, K_{17} \in \mathcal{K}(x).
\]

Therefore, by [2, Lemma 2.4], \((y - AB) \in \Phi(x) \). This completes the proof that \(\sigma_\Phi(AB) \subseteq \sigma_\Phi(B) \sigma_\Phi(A) \).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 2.1. Let $A \in C(X)$ and $B \in L(X)$. Assume $0 \notin \sigma(B)$. Let $B: D(A) \to D(A)$ and let there exist a compact operator, K, such that $BAx = ABx + Kx$, $\forall x \in D(A)$. Then BA and $AB|_{D(A)}$ are closed and

1. $\sigma(AB|_{D(A)}) = \sigma(BA) \subseteq \sigma(B)\sigma(A)$, and
2. $\sigma(AB) \subseteq \sigma(B)\sigma(A)$.

Proof. Since B is invertible and A is closed, BA is closed. We proceed to show that $AB|_{D(A)}$ is closed.

Let $x_n \in D(A)$, $x_n \to x$ and $ABx_n \to y$. Since B is bounded and A is closed, we have $y = ABx$. We have only to show that $x \in D(A)$, $BAx_n = (ABx_n + Kx_n)$ converges to some vector, z. Therefore, $Ax_n \to B^{-1}z$, and, since A is closed, $x \in D(A)$. This shows that $AB|_{D(A)}$ is closed.

Since $BA = AB|_{D(A)} + K$, we have by [2, Theorem 2.8] that $\sigma(AB|_{D(A)}) = \sigma(BA)$. The remainder of the corollary follows from Theorem 2.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, BERNARD M. BARUCH COLLEGE (CUNY), NEW YORK, NEW YORK 10010

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE (CUNY), FLUSHING, NEW YORK 11367