Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A summation formula involving $ \sigma (N)$


Author: C. Nasim
Journal: Trans. Amer. Math. Soc. 192 (1974), 307-317
MSC: Primary 10A20
DOI: https://doi.org/10.1090/S0002-9947-1974-0337738-X
MathSciNet review: 0337738
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ {L^2}$ theories are known of the summation formula involving $ {\sigma _k}(n)$, the sum of the kth power of divisors of n, as coefficients, for all k except $ k = 1$. In this paper, techniques are used to overcome the extra convergence difficulty of the case $ k = 1$, to establish a symmetric formula connecting the sums of the form $ \sum {\sigma _1}(n){n^{ - 1/2}}f(n)$ and $ \sum {{\sigma _1}} (n){n^{ - 1/2}}g(n)$, where $ f(x)$ and $ g(x)$ are Hankel transforms of each other.


References [Enhancements On Off] (What's this?)

  • [1] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. V, Trans. Amer. Math. Soc. 160 (1971), 139-156. MR 43 #6412. MR 0280693 (43:6412)
  • [2] I. W. Busbridge, A theory of general transforms of the class $ {L^p}(0,\infty )(1 \leq p \leq 2)$, Quart. J. Math. Oxford Ser. (2) 9 (1939), 148-160.
  • [3] A. Erdélyi, Tables of integral transforms, Vol. 1, McGraw-Hill, New York, 1954. MR 15, 868.
  • [4] A. P. Guinand, General transformations and the Parseval theorem, Quart. J. Math. Oxford Ser. (2) 12 (1941), 51-56. MR 2, 261. MR 0004330 (2:361e)
  • [5] -, Summation formulae and self-reciprocal functions. II, Quart. J. Math. Oxford Ser. (2) 10 (1939), 104-118.
  • [6] A Hurwitz and R. Courant, Funktionentheorie und elliptische Funktionen, Springer, Berlin, 1922.
  • [7] J. B. Miller, A symmetrical convergence theory for general transforms, Proc. London Math. Soc. (3) 8 (1958), 224-241. MR 20 #3430. MR 0096948 (20:3430)
  • [8] C. Nasim, A summation formula involving $ {\sigma _k}(n),k > 1$, Canad. J. Math 21 (1969), 951-964. MR 40 #110. MR 0246841 (40:110)
  • [9] -, On the summation formula of Voronoi, Trans. Amer. Math. Soc. 163 (1971),35-45. MR 44 #1637. MR 0284410 (44:1637)
  • [10] A. G. Voronoi, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. Ecole Norm. Sup. (3) 21 (1904).
  • [11] G. N. Watson, General transforms, Proc. London Math. Soc. (2) 35 (1933), 156-199.
  • [12] J. R. Wilton, An extended form of Dirichlet's divisor problem, Proc. London Math. Soc. (2) 36 (1933), 391-426.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10A20

Retrieve articles in all journals with MSC: 10A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0337738-X
Keywords: Fourier transform, Mellin transform, $ {L^2}$ class, Parseval theorem, convergence in mean square, Riesz summability
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society