Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convex hulls and extreme points of some families of univalent functions


Author: D. J. Hallenbeck
Journal: Trans. Amer. Math. Soc. 192 (1974), 285-292
MSC: Primary 30A32
DOI: https://doi.org/10.1090/S0002-9947-1974-0338338-8
MathSciNet review: 0338338
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The closed convex hull and extreme points are obtained for the functions which are convex, starlike, and close-to-convex and in addition are real on $ ( - 1,1)$. We also obtain this result for the functions which are convex in the direction of the imaginary axis and real on $ ( - 1,1)$. Integral representations are given for the hulls of these families in terms of probability measures on suitable sets. We also obtain such a representation for the functions $ f(z)$ analytic in the unit disk, normalized and satisfying $ \operatorname{Re} f'(z) > \alpha $ for $ \alpha < 1$. These results are used to solve extremal problems. For example, the upper bounds are determined for the coefficients of a function subordinate to some function satisfying $ \operatorname{Re} f'(z) > \alpha $.


References [Enhancements On Off] (What's this?)

  • [1] L. Brickman, D. J. Hallenbeck, T. H. MacGregor and D. R. Wilken, Convex hulls and extreme points of familiės of starlike and convex mappings, Trans. Amer. Math. Soc. (to appear). MR 0338337 (49:3102)
  • [2] L. Brickman, T. H. MacGregor and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107. MR 43 #494. MR 0274734 (43:494)
  • [3] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. MR 31 #2389. MR 0178131 (31:2389)
  • [4] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. MR 25 #4090. MR 0140674 (25:4090)
  • [5] -, The radius of convexity for starlike functions of order $ 1/2$, Proc. Amer. Math. Soc. 14 (1963), 71-76. MR 27 #283. MR 0150282 (27:283)
  • [6] -, Applications of extreme-point theory to univalent functions, Michigan Math. J. 19 (1972), 361-376. MR 0311885 (47:447)
  • [7] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640. MR 0045823 (13:640h)
  • [8] K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science, Hokkaido Imperial University, Sapporo (1934/35), pp. 129-155.
  • [9] P. Porcelli, Linear spaces of analytic functions, Rand McNally, Chicago, Ill., 1966. MR 41 #4219. MR 0259581 (41:4219)
  • [10] M. S. Robertson, On the theory of univalent functions, Amer. J. Math. (2) 37 (1936), 374-408. MR 1503286
  • [11] -, Analytic functions star-like in one direction, Amer. J. Math. 58 (1936), 465-472. MR 1507169
  • [12] W. Rogozinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. MR 5, 36. MR 0008625 (5:36a)
  • [13] D. B. Shaffer, Analytic functions $ f(z)$ with Re $ f(z) > 1/2$ and applications, Notices Amer. Math. Soc. 19 (1972), A704-A705. Abstract #727-B287.
  • [14] A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman & Hall, London, 1958. MR 20 #5411. MR 0098966 (20:5411)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A32

Retrieve articles in all journals with MSC: 30A32


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0338338-8
Keywords: Univalent functions, starlike functions, starlike function with real coefficients, convex function, convex function with real coefficients, close-to-convex function, close-to-convex function with real coefficients, extreme point, integral representation, probability measures, subordination, continuous linear functional
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society