Instability and nonexistence of global solutions to nonlinear wave equations of the form

Author:
Howard A. Levine

Journal:
Trans. Amer. Math. Soc. **192** (1974), 1-21

MSC:
Primary 35L60; Secondary 47H15

DOI:
https://doi.org/10.1090/S0002-9947-1974-0344697-2

MathSciNet review:
0344697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the equation in the title, let *P* and *A* be positive semidefinite operators (with *P* strictly positive) defined on a dense subdomain , a Hilbert space. Let *D* be equipped with a Hilbert space norm and let the imbedding be continuous.

Let be a continuously differentiable gradient operator with associated potential function . Assume that for all and some .

Let where and be a solution to the equation in the title. The following statements hold:

If , then for some . If and if *u* exists on , then (*u,Pu*) grows at least exponentially. If and and if the solution exists on , then (*u,Pu*) grows at least as fast as .

A number of examples are given.

**[1]**N. Bazley and B. Zwahlen,*A branch of positive solutions to nonlinear eigenvalue problems*, Manuscripta Math.**2**(1970), 365-374. MR**42**#3628. MR**0268731 (42:3628)****[2]**-,*Estimation of the bifurcation coefficient for nonlinear eigenvalue problems*, Z. Angew. Math. Phys.**20**(1969), 281-288. MR**40**#6314. MR**0253099 (40:6314)****[3]**Stephen Berman,*Abstract wave equations with finite velocity of propagation*, Bull. Amer. Math. Soc.**77**(1971), 1011-1013. MR**0312098 (47:660)****[4]**A. Friedman,*Partial differential equations*, Holt, Rinehart and Winston, New York, 1969. MR**0445088 (56:3433)****[5]**F. John,*Continuous dependence on data for solutions of differential equations with a prescribed bound*, Comm. Pure Appl. Math.**13**(1960), 551-585. MR**24**#A317. MR**0130456 (24:A317)****[6]**K. Jörgens,*Das Anfangswertproblem im Grossen für eine Klasse Nichtlinearer Wellengleichung*, Math. Z.**77**(1967), 295-308. MR**0130462 (24:A323)****[7]**-,*Nonlinear wave equations*, University of Colorado Report, Boulder, Col., 1970.**[8]**J. B. Keller,*On solutions of*, Comm. Pure Appl. Math.**10**(1957), 503-510. MR**19,964**. MR**0091407 (19:964c)****[9]**-,*On solutions of nonlinear wave equations*, Comm. Pure Appl. Math.**10**(1957), 523-530. MR**20**#3371. MR**0096889 (20:3371)****[10]**R. J. Knops, H. A. Levine and L. E. Payne,*Nonexistence, instability and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics*(to appear).**[11]**H. A. Levine,*Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities*, J. Differential Equations**8**(1970), 34-55. MR**41**#3945. MR**0259303 (41:3945)****[12]**H. A. Levine and L. E. Payne,*A nonexistence theorem for the heat equation with a nonlinear boundary condition and for the porus medium equation, backward in time*(to appear). MR**0470481 (57:10235)****[13]**A. E. H. Love,*A treatise on the mathematical theory of elasticity*, Dover, New York, 1944. MR**6**, 79. MR**0010851 (6:79e)****[14]**D. H. Sattinger,*Stability of nonlinear hyperbolic equations*, Arch. Rational Mech. Anal.**28**(1967/68), 226-244. MR**37**#567. MR**0224968 (37:567)****[15]**W. A. Strauss,*The energy method in nonlinear partial differential equations*, Math. Notes**47**, Instituto de Matematica Pura e Aplicada, Rio de Janeiro, Brazil, 1969. MR**42**#8051. MR**0273170 (42:8051)****[16]**H. A. Levine,*Some nonexistence and instability theorems for solutions of formally parabolic equations of the form*, Arch. Rational Mech. Anal. (in print).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L60,
47H15

Retrieve articles in all journals with MSC: 35L60, 47H15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0344697-2

Article copyright:
© Copyright 1974
American Mathematical Society