Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representing measures and topological type of finite bordered Riemann surfaces


Author: David Nash
Journal: Trans. Amer. Math. Soc. 192 (1974), 129-138
MSC: Primary 30A48; Secondary 30A98
DOI: https://doi.org/10.1090/S0002-9947-1974-0385087-6
MathSciNet review: 0385087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite bordered Riemann surface $ \mathcal{R}$ with s boundary components and interior genus g has first Betti number $ r = 2g + s - 1$. Let a be any interior point of $ \mathcal{R}$ and $ {e_a}$ denote evaluation at a on the usual hypo-Dirichlet algebra associated with $ \mathcal{R}$. We establish some connections between the topological and, more strongly, the conformal type of $ \mathcal{R}$ and the geometry of $ {\mathfrak{M}_a}$ the set of representing measures for $ {e_a}$. For example, we show that if $ {\mathfrak{M}_a}$ has an isolated extreme point, then $ \mathcal{R}$ must be a planar surface. Several questions posed by Sarason are answered through exhausting the possibilities for the case $ r = 2$.


References [Enhancements On Off] (What's this?)

  • [1] P. R. Ahern, On the geometry of the unit ball in the space of real annihilating measures, Pacific J. Math. 28 (1969), 1-7. MR 40 #7785. MR 0254577 (40:7785)
  • [2] P. R. Ahern and D. Sarason, The $ {H^p}$ spaces of a class of function algebras, Acta Math. 117 (1967), 123-163. MR 36 #689. MR 0217600 (36:689)
  • [3] L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100-134. MR 12, 90; 13, 1138. MR 0036318 (12:90b)
  • [4] L. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N.J., 1960. MR 22 #5729. MR 0114911 (22:5729)
  • [5] L. Bieberbach, Conformal mapping, Chelsea, New York, 1953. MR 14, 462. MR 0051321 (14:462c)
  • [6] H. Busemann, Convex surfaces, Interscience Tracts in Pure and Appl. Math., no. 6, Interscience, New York, 1958. MR 21 #3900. MR 0105155 (21:3900)
  • [7] T. W. Gamelin and M. Voichick, Extreme points in spaces of analytic functions, Canad. J. Math. 20 (1968), 919-928. MR 37 #3023. MR 0227439 (37:3023)
  • [8] K. deLeeuw and W. Rudin, Extreme points and extremum problems in $ {H_1}$, Pacific J. Math. 8 (1958), 467-485. MR 20 #5426. MR 0098981 (20:5426)
  • [9] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640. MR 0045823 (13:640h)
  • [10] A. H. Read, A converse to Cauchy's theorem and applications to extremal problems, Acta Math. 100 (1958), 1-22. MR 20 #4640. MR 0098178 (20:4640)
  • [11] H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1-24. MR 25 #2190. MR 0138747 (25:2190)
  • [12] D. Sarason, Representing measures for $ R(X)$ and their Green's functions, J. Functional Analysis 7 (1971), 359-385. MR 0415327 (54:3416)
  • [13] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 19, 1169. MR 0092855 (19:1169g)
  • [14] M. Voichick and L. Zacman, Inner and outer functions on Riemann surfaces, Proc. Amer. Math. Soc. 16 (1965), 1200-1204. MR 32 #1359. MR 0183883 (32:1359)
  • [15] J. Wermer, Analytic disks in maximal ideal spaces, Amer. J. Math. 86 (1964), 161-170. MR 28 #5355. MR 0162156 (28:5355)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A48, 30A98

Retrieve articles in all journals with MSC: 30A48, 30A98


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0385087-6
Keywords: Finite bordered Riemann surface, representing measure, real annihilating measure, hypo-Dirichlet algebra, convex body, extreme point, Betti number, interior genus, conformai equivalence
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society