Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A theory of Stiefel harmonics


Author: Stephen S. Gelbart
Journal: Trans. Amer. Math. Soc. 192 (1974), 29-50
MSC: Primary 43A85; Secondary 22E45, 33A75
DOI: https://doi.org/10.1090/S0002-9947-1974-0425519-8
MathSciNet review: 0425519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit theory of special functions is developed for the homogeneous space $ SO(n)/SO(n - m)$ generalizing the classical theory of spherical harmonics. This theory is applied to describe the decomposition of the Fourier operator on $ n \times m$ matrix space in terms of operator valued Bessel functions of matrix argument. Underlying these results is a hitherto unnoticed relation between certain irreducible representations of $ SO(n)$ and the polynomial representations of $ GL(m,{\mathbf{C}})$.


References [Enhancements On Off] (What's this?)

  • [1] S. Bochner, Theta relations with spherical harmonics, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 804-808. MR 14, 43. MR 0048633 (14:43i)
  • [2] H. Boerner, Representations of groups, North-Holland, Amsterdam, 1963.
  • [3] E. Cartan, Sur la determination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929), 217-252.
  • [4] S. Gelbart Harmonics on Stiefel manifolds and generalized Hankel transforms, Bull. Amer. Math. Soc. 78 (1972), 451-455. MR 0480872 (58:1021)
  • [5] -, Holomorphic discrete series for the real symplectic group, Invent Math. 19 (1973), 49-58. MR 0320231 (47:8770)
  • [6] S. Helgason, Invariants and fundamental funtions, Acta Math. 109 (1963), 241-258. MR 29 #3581. MR 0166304 (29:3581)
  • [7] C. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474-523. MR 16,1107. MR 0069960 (16:1107e)
  • [8] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 28 #1252. MR 0158024 (28:1252)
  • [9] D. Levine, Systems of singular integrals on spheres, Trans. Amer. Math. Soc. 144 (1969), 493-522. MR 0412743 (54:864)
  • [10] H. Maass, Spherical functions and quadratic forms, J. Indian Math. Soc. 20 (1956), 117-162. MR 19, 252. MR 0086837 (19:252a)
  • [11] E. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, no. 30, Princeton Univ. Press, Princeton, N.J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [12] -, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Prof. Internat. Congress Math. (Nice, 1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 173-190. MR 0578903 (58:28279)
  • [13] R. Strichartz, The Fourier decomposition of $ {L^2}(SO(n)/SO(n - m))$ (to appear).
  • [14] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211. MR 29 #2324. MR 0165033 (29:2324)
  • [15] H. Weyl, The classical groups. Their invariants and representations, 2nd ed., Princeton Univ. Press, Princeton, N.J., 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A85, 22E45, 33A75

Retrieve articles in all journals with MSC: 43A85, 22E45, 33A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0425519-8
Keywords: Generalized spherical harmonics, Stiefel manifold, representations of $ SO(n)$, holomorphic representations of $ GL(m,{\mathbf{C}})$, Fourier transforms on matrix space, generalized Hankel transforms, Bessel functions of matrix argument
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society