Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariant measures and growth conditions


Author: Joseph Max Rosenblatt
Journal: Trans. Amer. Math. Soc. 193 (1974), 33-53
MSC: Primary 43A07; Secondary 20F15
DOI: https://doi.org/10.1090/S0002-9947-1974-0342955-9
MathSciNet review: 0342955
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a finitely-generated group acting on a set X and let A be a nonempty subset of X. If G has polynomial growth then there exists a finitely-additive G-invariant positive extended real-valued measure $ \mu $ defined on all subsets of X such that $ \mu (A) = 1$. When G is solvable, it has polynomial growth if and only if it does not contain a free subsemigroup on two generators. If G contains a free subsemigroup S on two generators, then G has exponential growth and there does not exist a measure $ \mu $ as above with G acting on itself by multiplication and $ A = S$.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, The degree of polynomial growth of finitely-generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603-614. MR 0379672 (52:577)
  • [2] Z. I. Borevič and I. R. Šafarevič, Number theory, ``Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; 33 #4001. MR 0195803 (33:4001)
  • [3] W. R. Emerson and F. P. Greenleaf, Asymptotic behavior of products $ {C^p} = C + \cdots + C$ in locally compact abelian groups, Trans. Amer. Math. Soc. 145 (1969), 171-204. MR 40 #2780. MR 0249535 (40:2780)
  • [4] A. H. Frey, Studies in amenable semigroups, Dissertation, University of Washington, Seattle, Wash., 1960.
  • [5] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [6] M. Höchster, Semigroups of amenable groups, Proc. Amer. Math. Soc. 21 (1969), 363-364. MR 39 #1575. MR 0240223 (39:1575)
  • [7] K. Hoffman and R. Kunze, Linear algebra, Prentice-Hall Math. Series, Prentice-Hall, Englewood Cliffs, N. J., 1961. MR 23 #A3146. MR 0125849 (23:A3146)
  • [8] A. Hulanicki, On symmetry of group algebras of discrete nilpotent groups, Studia Math. 35 (1970), 207-219. MR 43 #3814. MR 0278082 (43:3814)
  • [9] -, On positive functionals on a group algebra multiplicative on a subalgebra, Studia Math. 37 (1971), 163-171. MR 0310547 (46:9645)
  • [10] Joe Jenkins, On the spectral radius of elements in a group algebra, Illinois J. Math. 15 (1971), 551-554. MR 44 #4538. MR 0287332 (44:4538)
  • [11] -, Growth of connected locally compact groups, J. Functional Analysis 12 (1973). MR 0349895 (50:2388)
  • [12] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617. MR 0207802 (34:7617)
  • [13] A. I. Mal'cev, On certain classes of infinite solvable groups, Mat. Sb. 28 (70) (1951), 567-588; English transl., Amer. Math. Soc. Transl. (2) 2 (1956), 1-21. MR 13, 203; 17, 824. MR 0043088 (13:203k)
  • [14] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1-7. MR 38 #636. MR 0232311 (38:636)
  • [15] -, Growth of finitely-generated solvable groups, J. Differential Geometry 2 (1968), 447-449. MR 39 #6212. MR 0244899 (39:6212)
  • [16] N. Rickert, Groups with the fixed point property, Dissertation, Yale University, New Haven, Conn., 1965.
  • [17] J. Rosenblatt, A generalization of Følner's condition, Math. Scand. (to appear). MR 0333068 (48:11393)
  • [18] J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Boston, Mass., 1965. MR 34 #4338. MR 0204499 (34:4338)
  • [19] J. von Neumann, Zur Allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116.
  • [20] J. Wolf, Growth of finitely-generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421-446. MR 40 #1939. MR 0248688 (40:1939)
  • [21] S. Balcerzyk and J. Mycielski, On the existence of free subgroups in topological groups, Fund. Math. 44 (1957), 303-308. MR 0094417 (20:935)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A07, 20F15

Retrieve articles in all journals with MSC: 43A07, 20F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0342955-9
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society