A GENERALIZATION OF THE \(\cos \pi \rho \) THEOREM

BY

ALBERT BAERNSTEIN 11(1)

ABSTRACT. Let \(f \) be an entire function, and let \(\beta \) and \(\lambda \) be positive numbers with \(\beta < \pi \) and \(\beta \lambda < \pi \). Let \(E(r) = \{ \theta : \log |f(re^{i\theta})| > \cos \beta \lambda \log M(r) \} \). It is proved that either there exist arbitrarily large values of \(r \) for which \(E(r) \) contains an interval of length at least \(2\beta \), or else \(\lim_{r \to \infty} r^{-\lambda} \log M(r, f) \) exists and is positive or infinite. For \(\beta = \pi \) this is Kjellberg's refinement of the \(\cos \pi \rho \) theorem.

1. Introduction. Let \(f \) be an entire function. The classical \(\cos \pi \rho \) theorem (see [4, Chapter 3] for its history) asserts that if \(f \) has order \(\rho \), with \(0 < \rho < 1 \), then

\[
\limsup_{r \to \infty} \frac{\log m(r)}{\log M(r)} \geq \cos \pi \rho,
\]

where \(M(r) \) and \(m(r) \) denote \(\sup |f(z)| \) and \(\inf |f(z)| \) on \(|z| = r \), respectively.

Kjellberg [11] proved a striking improvement of this theorem. He showed that, for any number \(\lambda \in (0, 1) \), either \(\log m(r) > \cos \pi \lambda \log M(r) \) holds for certain arbitrarily large values of \(r \) or else \(\lim_{r \to \infty} r^{-\lambda} \log M(r) \) exists and is positive or infinite. (The case \(\lambda = \frac{1}{2} \) had been proved earlier by Heins [7].) A consequence of Kjellberg's theorem is that if \(f \) has lower order \(\rho^* \in (0, 1) \) then the lim sup in (1) is \(\geq \cos \pi \rho^* \). We remark that in this theorem it is not necessary to make any assumption about the order of \(f \).

In this note I shall prove the following result:

Theorem 1. Let \(f \) be a nonconstant entire function. Let \(\beta \) and \(\lambda \) be numbers with \(0 < \lambda < \infty \), \(0 < \beta \leq \pi \), \(\beta \lambda < \pi \). Then either

(a) there exist arbitrarily large values of \(r \) for which the set of \(\theta \) such that \(\log |f(re^{i\theta})| > \cos \beta \lambda \log M(r) \) contains an interval of length at least \(2\beta \), or else

(b) \(\lim_{r \to \infty} r^{-\lambda} \log M(r) \) exists, and is positive or infinite.

For \(\beta = \pi \) this is Kjellberg's theorem. For \(\beta = \pi/2\lambda \) the theorem provides a sharpening of results of Arima [1] and Heins [8, p. 121].

The possibility that there might be a result like the one in Theorem 1 was suggested to me by A. Weitsman. I would also like to acknowledge some very
helpful discussions with R. R. Coifman, Guido Weiss, and W. B. Jurkat.

Drasin and Shea [5], [6] have characterized functions extremal for the \(\cos \pi p \) theorem, that is, those entire functions \(f \) of order \(p \in (0, 1) \) for which equality holds in (1). It would be interesting to determine what sort of functions are extremal, in a similar sense, for Theorem 1.

Theorem 1 suggests an analogous problem for meromorphic functions. For a given number \(\alpha \), what can we say about the size of the set

\[
E_\alpha(r) = \{ \theta : \log |f(re^{i\theta})| > \alpha T(r, f) \},
\]

where \(T(r, f) \) denotes the Nevanlinna characteristic of \(f \)? For \(\alpha = 0 \) the author has proved [2], [3] the "spread relation":

\[
\limsup_{r \to \infty} \text{meas } E_0(r) \geq \min \{ 2\pi, 4\rho^{-1} \sin^{-1}(\delta/2)^{1/2} \},
\]

where \(\rho \) is the lower order of \(f \) and \(\delta = \delta(\infty, f) \) is the Nevanlinna deficiency of \(f \) at \(\infty \). It is also known ([12], [13], [14], [15]) that certain hypotheses on \(\alpha \), \(\delta \), and \(\rho \) insure that \(\limsup_{r \to \infty} E_\alpha(r) = 2\pi \).

The proof of Theorem 1 depends on two key inequalities involving an auxiliary function \(\mu(r) \). In \S 2 we state the inequalities and then show how the conclusion of the theorem follows from them. In \S\S 3, 4 we obtain some results about harmonic functions which are needed to prove the inequalities, and in \S\S 5, 6 we prove the inequalities themselves.

2. The auxiliary functions and key inequalities. Let \(f \) be entire and nonconstant. Consider the function \(u \) defined by

\[
u(r, \theta, \phi) = \int_{-\theta}^{\theta} \log |f(re^{i(\omega+\phi)}| \, d\omega
\]

where \(0 \leq r < \infty \), \(0 \leq \theta \leq \pi \), and \(\phi \) is any real number. This function was introduced by the author in [2], where it was shown (Statements (3.9) and (3.10)) that

\[
\text{for each fixed } \phi, \nu(r, \theta, \phi) \text{ is a subharmonic function of } re^{i\theta} \text{ in}
\]

\[
0 < \theta < \pi \text{ and, for each fixed } \theta \in [0, \pi], \nu(r, \theta, \phi) \text{ is a subharmonic function of } re^{i\phi} \text{ in the whole plane.}
\]

We remark that the statements (3.9) and (3.10) of [2] do not cover the cases when \(\theta \) is fixed and has the value zero or \(\pi \). However, for \(\theta = 0 \) we have \(u = 0 \) and for \(\theta = \pi \) we have

\[
u(r, \pi, \phi) = 2\pi \left[N(r, 0, f) + k \log r + \log |c_k| \right]
\]

where \(N \) has its usual meaning and \(c_k \) is the first nonvanishing coefficient in the Maclaurin series of \(f \). The function in the brackets is a convex function of \(\log r \), hence is a subharmonic function of \(re^{i\phi} \). Thus (2) still holds when \(\theta = 0 \) and \(\theta = \pi \).
Now consider the function \(\nu(z) \) defined in the upper half plane by

\[
\nu(re^{i\theta}) = \sup_{\phi} u(r, \theta, \phi) \quad (0 \leq \theta \leq \pi).
\]

Alternatively,

\[
\nu(re^{i\theta}) = \sup_I \int I \log \left| f(re^{i\omega}) \right| \, d\omega
\]

where the sup is taken over all \(\omega \)-intervals \(I \) of length exactly \(2\theta \). This \(\nu(z) \) is the same, except for a factor of \(2\pi \), as the functions \(m_1(z) \) and \(T_1(z) \) considered by the author in [2].

\textbf{Proposition 1.} (a) For each fixed \(re^{i\theta} \) there exists an interval \(I \) of length \(2\theta \) for which the sup in (3) is attained.

(b) \(\nu(z) \) is subharmonic in \(\text{Im } z > 0 \) and continuous on \(\text{Im } z \geq 0 \), except perhaps at \(z = 0 \).

(c) For each fixed \(\beta \in (0, \pi] \), \(\nu(re^{i\beta}) \) is a nondecreasing convex function of \(\log r \), \(0 < r < \infty \).

(d) Define

\[
\nu_\beta(r) = \lim_{\theta \to 0^+} \frac{1}{\theta} \left[\nu(re^{i\theta}) - \nu(r) \right] = \lim_{\theta \to 0^+} \frac{1}{\theta} \nu(re^{i\theta}).
\]

Then \(\nu_\beta(r) = 2 \log M(r, \beta) \) \((0 < r < \infty) \).

\textbf{Proof.} (a) For \(re^{i\theta} \) fixed, \(u(r, \theta, \phi) \) is a continuous periodic function of \(\phi \). Take a \(\phi \) for which \(u(r, \theta, \phi) \) is maximal, and let \(I \) be the interval of length \(2\theta \) centered at \(\phi \).

(b) The continuity statement follows from a routine argument. The definition (3), together with (2), shows that \(\nu(re^{i\theta}) \) is the supremum of a family of subharmonic functions of \(re^{i\theta} \). Such a function is always subharmonic, provided it is upper semicontinuous, and this is certainly the case here.

(c) The definition (3), together with (2), allows us to interpret \(\nu(re^{i\beta}) \) as the maximum modulus of a function of \(re^{i\phi} \) which is subharmonic in the whole plane. This implies the conclusion (c).

(d) For any interval \(I \) of length \(2\theta \) we have \(\int_I \log \left| f(re^{i\omega}) \right| \, d\omega \leq 2\theta \log M(r) \). This implies

\[
\limsup_{\theta \to 0^+} \theta^{-1} \nu(re^{i\theta}) \leq 2 \log M(r).
\]

On the other hand, let \(re^{i\phi_0} \) be a point such that \(\log \left| f(re^{i\phi_0}) \right| = \log M(r) \). Then \(\nu(re^{i\theta}) \geq \int_{-\theta}^{\theta} \log \left| (r \exp \{ i(\phi_0 + \omega) \}) \right| \, d\omega \). Dividing by \(\theta \) and letting \(\theta \to 0 \) we obtain

\[
\liminf_{\theta \to 0^+} \theta^{-1} \nu(re^{i\theta}) \geq 2 \log M(r),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
which with (5), proves (d). This completes the proof of Proposition 1.

Fix $\beta \in (0, \pi]$. Let $I(\tau)$ be an interval of length 2β such that $v(re^{i\beta}) = \int_{I(\tau)} \log |(re^{i\omega})| \, d\omega$. Define

$$
\mu(\tau) = \inf \{ \log |(re^{i\omega})| : \omega \in I(\tau) \}.
$$

Then conclusion (a) of Theorem 1 will hold if

$$
(6) \quad \mu(\tau) > (\cos \beta) \log M(\tau)
$$

for arbitrarily large values of τ.

In the inequalities below it is assumed that β and γ satisfy the hypotheses of Theorem 1.

Key inequality I. There exist positive constants C_1, C_2, depending only on β and λ, such that whenever $f(0) = 1$, we have

$$
(7) \quad \int_0^s \frac{\mu(t) - (\cos \beta) \log M(t)}{r^{1+\lambda}} \, dt > C_1 \frac{\log M(r)}{r^\lambda} - C_2 \frac{\log M(2s)}{s^\lambda} \quad (0 < r < s < \infty).
$$

Key inequality II. Let

$$
Q(r, t) = 2\pi^{-2}(r^2 - t^2)^{-1} \log rt^{-1}, \quad \gamma = \beta/\pi.
$$

Then, if $\limsup_{r \to \infty} r^{-\lambda} \log M(r) < \infty$, we have

$$
(8) \quad \log M(r^\gamma) \leq \int_0^\infty \left[\mu(t^\gamma) + \log M(t^\gamma) \right] Q(r, t) \, dt \quad (0 < r < \infty).
$$

Once we have these inequalities the proof of Theorem 1 is completed by exactly the same reasoning as that used by Kjellberg in [10] and [11]. Let

$$
A = \liminf_{r \to \infty} r^{-\lambda} \log M(r), \quad B = \limsup_{r \to \infty} r^{-\lambda} \log M(r).
$$

If $A = B = \infty$ then conclusion (b) of Theorem 1 holds. If $B = \infty$ and $A < \infty$ we can find arbitrarily large values of r and s, with $r < s$, such that the right-hand side of (7) is positive. So, if $f(0) = 1$, then (6) holds for some $t > r$ and we are done. If $B = 0$ and $f(0) = 1$ then $r^{-\lambda} \log M(r) > 0$ for $r > 0$. For each fixed r the right-hand side of (7) is positive for all sufficiently large s, and again we are done.

The restriction $f(0) = 1$ can be removed in the usual way. Let g be the entire function with $g(0) = 1$ and $f(z) = cz^k g(z)$ $(c \neq 0)$. Then

$$
(9) \quad \log M(r, g) = \log M(r, f) - \log |c| - k \log r,
$$

and $\mu(r, g)$ can be chosen so that (9) holds with μ in place of $\log M$. Using (7) with g in place of f we easily deduce
A Generalization of the $\cos n \theta$ Theorem

185

\[
\int r \frac{\mu(t, f) - \cos \beta \lambda \log \mathcal{M}(t, f)}{t^{1+\lambda}} \, dt > c_1 r^{-\lambda} (\log \mathcal{M}(r, f) - \log |c| - k \log r)
\]

\[
- c_2 s^{-\lambda} (\log \mathcal{M}(2s, f) - \log |c| - k \log 2s)
\]

\[
- (\lambda^2)^{-1} (1 - \cos \beta \lambda) \log |c|^{-1} \quad (1 \leq r < s < \infty).
\]

Arguing as above, with obvious modifications, we find that if $\beta = \infty$ and $A < \infty$, or if $B = 0$ and f is not a polynomial, then (6) holds for arbitrarily large values of t. (For f a polynomial (6) holds for all sufficiently large values of t.)

Now consider the case $0 < B < \infty$, so that (8) holds. If (6) is false for all sufficiently large t then

\[
\mu(t) \leq (\cos \beta \lambda) \log \mathcal{M}(t) \quad (t \geq t_0).
\]

Dividing f by a large positive constant, if necessary, we can assume that (10) holds for all $t > 0$. (See the argument on p. 6 of [11].) Putting (10) in (8) we obtain

\[
\log \mathcal{M}(r^\gamma) \leq \int_0^\infty (1 + \cos \beta \lambda) \log \mathcal{M}(t^\gamma) \varphi(t, t) \, dt.
\]

Proceeding as in §4 of [11], with $\gamma \lambda$ in place of λ, we arrive at

\[
\lim_{r \to \infty} \frac{\log \mathcal{M}(r^\gamma)}{r^{\gamma \lambda}} = B > 0
\]

so that (b) of Theorem 1 holds.

3. A class of harmonic functions. In this section $B(t)$ will always stand for a nondecreasing convex function of $\log t$ on $(0, \infty)$ satisfying

\[
B(0) = B(0^+) = 0, \quad B(t) = O(t^\rho) \quad (t \to \infty)
\]

for some $\rho \in (0, 1)$.

The function $B(t)$ is absolutely continuous. Let $B_1(t)$ denote its logarithmic derivative, $B_1(t) = t B'(t)$. Then B_1 exists a.e., and is a nonnegative nondecreasing function of t.

Since $B(2t) \geq \int_t^{2t} B_1(s) s^{-1} ds \geq B_1(t) \log 2$, it follows that

\[
B_1(t) = O(t^\rho) \quad (t \to \infty).
\]

Similarly, $B(t^{1/2}) - B(t) \geq B_1(t) (\log t^{1/2} - \log t)$, so

\[
\lim_{t \to 0} \left(\log \frac{1}{t} \right) B_1(t) = 0.
\]

The Poisson integral
\[k(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty B(t) \frac{r \sin \theta}{t^2 + r^2 + 2tr \cos \theta} \, dt \]

is harmonic in the slit plane \(|\arg z| < \pi\), is zero on the positive axis and tends to \(B(r)\) as \(\theta \to \pi -\), the convergence being uniform on bounded subsets of \((0, \infty)\).

The purpose of this section is to obtain some results about \(b_\theta = \partial b / \partial \theta\). These results generalize known properties of entire functions. Let

\[F(z) = \prod_{n=1}^\infty \left(1 + \frac{\pi}{a_n} \right) \]

where \(0 < a_n < a_{n+1}\) and \(n^{1/p} = O(a_n)\). Then \(B(t) = N(t, 0, f) = \sum \log^+(t/a_n)\) satisfies our hypotheses, and \(B_1(t) = n(t, 0, f)\). In this case the Poisson integral \(b\) has a representation \(b(re^{i\theta}) = \pi^{-1} \int_0^\infty \log |F(re^{i\phi})| \, d\phi\), since the right-hand side is a function harmonic in the upper half plane which has the same boundary values as \(b\). Thus \(b_\theta(re^{i\theta}) = \pi^{-1} \log F(re^{i\theta})\). In particular,

\[b_\theta(r) = \pi^{-1} \log M(r, F), \quad b_\theta(re^{im}) = \pi^{-1} \log m(r, F). \]

The reader might find it helpful to keep this special case in mind in what follows.

Proposition 2.

\[b_\theta(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty \log \left| 1 + \frac{r}{t} e^{i\theta} \right| \, dB_1(t) \quad (|\theta| < \pi). \]

This generalizes the well-known formula \(\log |F(re^{i\theta})| = \int_0^\infty \log |1 + n^{-1} e^{i\theta}| \, dn(t)\).

Proof. We differentiate the Poisson integral with respect to \(\theta\); use

\[\frac{\partial}{\partial \theta} \left(\frac{r \sin \theta}{t^2 + r^2 + 2tr \cos \theta} \right) = -\frac{\partial}{\partial t} \Re \left(\frac{re^{i\theta}}{t + re^{i\theta}} \right) \]

and integrate by parts. The result is

\[b_\theta(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty B_1(t) \Re \left(\frac{re^{i\theta}}{t + re^{i\theta}} \right) \, dt. \]

Using

\[\Re \left(\frac{re^{i\theta}}{t + re^{i\theta}} \right) = -\frac{\partial}{\partial t} \log \left| 1 + \frac{re^{i\theta}}{t} \right|. \]

doing another integration by parts, and observing (11), (12), we obtain (13).

Proposition 3.

\[\lim_{\theta \to \pi^-} \frac{B(t) - k(re^{i\theta})}{\pi - \theta} = \lim_{\theta \to \pi^-} b_\theta(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty \log \left| 1 - \frac{r}{t} \right| \, dB_1(t). \]
The above integral is always well defined, but it may be \(-\infty\) for some values of \(r\).

Proof. Fix \(r \in (0, \infty)\). Since \(\log |1 + re^{i\theta}/t|\) is a decreasing function of \(\theta\) on \((0, \pi)\), and since \(\log |1 + re^{i\theta}/t| \leq \log (1 + r/t)\) \((0 < \theta \leq \pi)\) with

\[
\int_0^\infty \log (1 + r/t) \, dB_1(t) = b_\theta(r) < \infty,
\]

the monotone convergence theorem shows that

\[
\lim_{\theta \to \pi^-} \frac{1}{\pi} \int_0^\infty \log \left| 1 + \frac{re^{i\theta}}{t} \right| \, dB_1(t) = \frac{1}{\pi} \int_0^\infty \log \left| 1 - \frac{r}{t} \right| \, dB_1(t).
\]

Because of (13), this proves the second equality in (14).

The proof of the other equality seems to require a slightly more elaborate argument. Take \(\theta \in (0, \pi)\). From Proposition 2 we deduce

\[
b(\theta) = \int_0^\theta b_\theta(re^{i\phi}) \, d\phi = \frac{1}{\pi} \int_0^\infty dB_1(t) \int_0^\pi \log \left| 1 + \frac{re^{i\phi}}{t} \right| \, d\phi.
\]

Now

\[
B(\theta) = \int_0^\infty \log \left| 1 + \frac{re^{i\phi}}{t} \right| \, dB_1(t) = \frac{1}{\pi} \int_0^\infty dB_1(t) \int_0^\pi \log \left| 1 + \frac{re^{i\phi}}{t} \right| \, d\phi.
\]

So, setting \(A(r, \theta) = \pi^{-1} \int_0^\pi \log |1 + re^{i\phi}| \, d\phi\) we see that

\[
(15) \quad B(r) - b(re^{i\theta}) = \int_0^\infty A(r^{-1}, \theta) \, dB_1(t).
\]

A calculation shows

\[
\pi(\pi - \theta) \frac{\partial}{\partial \theta} \frac{A(r, \theta)}{\pi - \theta} = -\log |1 + re^{i\phi}| + \frac{1}{\pi - \theta} \int_\theta^{\pi} \log |1 + re^{i\phi}| \, d\phi.
\]

The monotonicity of \(\log |1 + re^{i\phi}|\) thus implies

\[
\frac{\partial}{\partial \theta} A(r, \theta) < 0 \quad (0 < \theta < \pi).
\]

Hence, for \(r\) and \(t\) fixed, \((\pi - \theta)^{-1} A(r/t, \theta) \searrow \) as \(\theta \nearrow \pi\). In particular,

\[
\frac{1}{\pi - \theta} A\left(\frac{r}{t}, \theta\right) < \frac{1}{\pi} A\left(\frac{r}{t}, \pi\right) = \log \left| 1 + \frac{r}{t} \right|.
\]

Now \(\int_0^\infty \log \left| 1 + \frac{re^{i\phi}}{t} \right| \, dB_1(t) = B(r) < \infty\), so, when we divide (15) by \(\pi - \theta\) and let \(\theta \nearrow \pi\) the monotone convergence theorem is again applicable. Since

\[
\lim_{\theta \to \pi^-} (\pi - \theta)^{-1} A(r/t, \theta) = \pi^{-1} \log |1 - r/t|,
\]

the other equality in (14) is thus established.

From now on we will denote the quantity appearing in (14) by \(b_\theta(-r)\).

Proposition 4. Let \(\sigma \in (0, 1)\). There exist positive constants \(k_1, k_2\), depending only on \(\sigma\), such that

\[
(16) \quad \int_r^s \frac{b_\theta(-r) - (\cos \sigma \theta) b_\theta(-s)}{t^{1+\sigma}} \, dt > k_1 \frac{b_\theta(r)}{r^\sigma} - k_2 \frac{b(s)}{s^\sigma} \quad (0 < r < s < \infty).
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
This generalizes the inequality (23) in Kjellberg's paper [10].

Proof. Let \(J \) be the integral in (16). Using Propositions 3 and 2, with \(\theta = 0 \), we deduce

\[
\int_0^\infty dB_t(u) \int_r^s t^{-(1+\sigma)}[\log|1-t/u| - \cos n\sigma \log(1+t/u)] \, dt.
\]

Kjellberg has shown [9], [10, p. 192] that

\[
\int_r^s t^{-(1+\sigma)}[\log|1-t/u| - \cos n\sigma \log(1+t/u)] \, dt
\]

\[
> k_1 r^{-\sigma} \log(1+r/u) - k_2 s^{-\sigma} \log(1+s/u) \quad (0 < u < \infty),
\]

where \(k_1, k_2 \) are positive and depend only on \(\sigma \). Putting this in (17), and using Proposition 2, with \(\theta = 0 \), we obtain (16).

Proposition 5.

(18) \(h \sigma t = \int_0^\infty [h \sigma t + h \sigma (-t)]Q(r, t) \, dt. \)

Here \(Q \) is as in the statement of key inequality II. This generalizes the identity (15) in Kjellberg's paper [11].

Proof. The function \(h \sigma t \) is harmonic in the half plane \(|\theta| < \pi/2 \) and is continuous on the closure (we define \(h \sigma t(0) = 0 \)). From (13) it follows easily that \(0 \leq h \sigma r(e^{i\theta}) \leq h \sigma r(0) = O(r^\rho) \, (|\theta| < \pi/2, r \to \infty) \). Thus \(h \sigma t \) can be represented in the half plane by the Poisson integral of its boundary values. Since \(h \sigma iy = h \sigma (-iy) \) for real \(y \), we have

(19) \(h \sigma t = \frac{2r}{\pi} \int_0^\infty h \sigma iy \frac{dy}{r^2 + y^2} \quad (0 < r < \infty). \)

Now we show that \(h \sigma t \) is also the Poisson integral of its boundary values on the real axis. Take \(\delta \in (0, \pi) \) and consider \(h \sigma r(e^{i(\theta - \delta)}) \) as a function of \(re^{i\theta} \) in the upper half plane. It follows easily from (13) that \(\sup_{\delta \leq \pi} |h \sigma r(e^{i(\theta - \delta)})| = O(r^\rho) \, (r \to \infty) \) for each fixed \(\delta \). Since \(h \sigma r(e^{i(\theta - \delta)}) \) is continuous in the closed half plane, we have

\[
\int_0^\infty [h \sigma (te^{-i\delta}) + h \sigma (te^{i(\pi - \delta)})] \frac{dt}{t^2 + y^2} \quad (0 < y < \infty).
\]

Let \(\delta \downarrow 0 \). Then \(h \sigma (te^{-i\delta}) \uparrow h \sigma t \) and \(h \sigma (te^{i(\pi - \delta)}) \downarrow h \sigma (-t) \), with \(h \sigma (te^{i(\pi - \delta)}) \leq h \sigma t \). Since \(h \sigma t \) is integrable with respect to \((t^2 + y^2)^{-1} \, dt \), we can apply the monotone convergence theorem and conclude

(20) \(h \sigma t = \frac{2r}{\pi} \int_0^\infty [h \sigma t + h \sigma (-t)] \frac{dt}{t^2 + y^2} \quad (0 < y < \infty). \)

Putting (20) in (19) and changing the order of integration, we get (18). (To see that Fubini's theorem is applicable here, consider, for fixed \(r \),
A GENERALIZATION OF THE \(\cos \pi \rho \) THEOREM

\[
F(t, y) = \left[b^\theta(t) + b^{\pi - \theta}(t) \right] \frac{y}{(r^2 + y^2)(t^2 + y^2)}
\]

\[
= 2b^\theta(t) \frac{y}{(r^2 + y^2)(t^2 + y^2)} - \left[b^\theta(t) - b^{\pi - \theta}(t) \right] \frac{y}{(r^2 + y^2)(t^2 + y^2)}
\]

\[
= F_1(t, y) - F_2(t, y).
\]

Then \(F_1 \geq 0 \), \(F_2 \geq 0 \), and it is easy to verify that \(\int_0^\infty dt \int_0^\infty F_1(t, y) dy < \infty \).

4. More results on harmonic functions.

Proposition 6. Let \(b \) be harmonic and bounded in \(|z| < R \). Let \(\alpha \in (0, 1) \). Then

\[
|b^\theta(z)| \leq k(\alpha) \left(\frac{|z|}{R} \right) \sup_{\phi} |b(Re^{i\phi})| \quad (|z| \leq \alpha R),
\]

where \(k(\alpha) \) depends only on \(\alpha \).

Proof. We have

\[
b(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} b(Re^{i\phi}) \frac{R^2 - r^2}{R^2 + r^2 - 2Rr \cos(\theta - \phi)} d\phi.
\]

Differentiation with respect to \(\theta \) and simple estimates show

\[
|b^\theta(re^{i\theta})| \leq \sup_{\phi} |b(Re^{i\phi})| \cdot \frac{(R^2 - r^2)2rR}{(R - r)^4} \quad (0 < r < R).
\]

If \(r \leq \alpha R \) then \((R - r)^3 \geq (1 - \alpha)^3 R^3 \), so

\[
\frac{(R^2 - r^2)2rR}{(R - r)^4} \leq \frac{4rR^2}{(1 - \alpha)^3 R^3} = k(\alpha) \frac{r}{R}
\]

and we are done.

The next result is a local version of Proposition 4 in which no assumption is made about the growth of the boundary function \(B(t) \).

Proposition 7. Let \(B(t) \) be a nondecreasing convex function of \(\log t \) on \((0, \infty) \) with \(B(0) = B(0+) = 0 \). Let \(g(\phi) \) be bounded and measurable on \((0, \pi) \). Let \(b \) be the function which is bounded and harmonic in the half disk \(\{ z : |z| < R, \text{Im} z > 0 \} \) and has the following boundary values:

\[
b(Re^{i\phi}) = g(\phi), \quad b(\pi) = 0, \quad b(-\pi) = B(\pi) \quad (0 < r < R).
\]

Let \(\sigma \in (0, 1), \alpha \in (0, 1) \). Suppose \(0 < r < s = \alpha R \). Then

\[
\int_r^s b^\theta(-\pi) - (\cos m\pi)h^\theta(\pi) \frac{dt}{t^{1+\sigma}} \geq k_1 \left(\frac{b^\theta(r)}{\sigma} - k(\alpha, \sigma) \frac{B(\alpha^{-1} R) + M_1}{s^\sigma} \right)
\]

where \(k_1 \) is as in Proposition 4, \(k(\alpha, \sigma) \) is a positive constant depending only on \(\alpha \) and \(\sigma \), and \(M_1 = \sup_{0 < \phi < \pi} |g(\phi)| \).
Proof. Define $B^*(t)$ by

$$B^*(t) = B(t) \quad (0 < t \leq R)$$

$$= B_1(R) \log(t/R) + B(R) \quad (R < t < \infty)$$

where $B_1(t) = tB'(t)$. Then B^* satisfies the hypotheses of the B in §3. Define b_1 in the slit plane $|\arg z| < \pi$ by

$$b_1(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty B^*(t) \frac{r \sin \theta}{t^2 + r^2 + 2tr \cos \theta} dt.$$

Define b_2 in the half disk by $b_2 = b - b_1$. Then $b_2(x) = 0$ for $-R < x < R$, so b_2 has a harmonic extension to the full disk $|z| < R$.

Let J be the integral in (21), and let J_1, J_2 be the corresponding integrals with b replaced by b_1 and b_2. Proposition 4 can be used to estimate J_1, so we have

$$J = J_1 + J_2 > k_1 \frac{(b_1)_\sigma(r)}{r^\sigma} - k_2 \frac{(b_1)_\sigma(s)}{s^\sigma} + J_2$$

(22)

$$= k_1 \frac{b_\sigma(r)}{r^\sigma} - k_2 \frac{(b_2)_\sigma(r)}{r^\sigma} - k_2 \frac{(b_1)_\sigma(s)}{s^\sigma} + J_2'$$

Let $M_2 = \sup_{0 < \phi < \pi} |b_2(Re^{i\phi})|$. By Proposition 6 we have

$$r^{-\sigma} |(b_2)_\sigma(r)| \leq k(\alpha) R^{-1} r^{-\sigma} M_2 < k(\alpha) M_2 R^{-\sigma}. \quad (23)$$

Another application of Proposition 6 gives

$$|J_2| \leq \int_r^s \frac{|(b_2)_\sigma(-\delta)| + |(b_2)_\sigma(\delta)|}{t^{1+\sigma}} dt$$

(24)

$$\leq 2k(\alpha) M_2 R^{-1} \int_r^s t^{-\sigma} dt < 2k(\alpha)(1 - \sigma)^{-1} M_2 R^{-1} s^{1-\sigma}$$

$$< 2k(\alpha)(1 - \sigma)^{-1} M_2 R^{-\sigma}. \quad \text{Using Proposition 2 with } \theta = 0,$$

and integrating by parts twice, we find

$$(b_1)_\sigma(s) = \frac{1}{\pi} \int_0^\infty \frac{s}{(t + s)^2} B^*(t) dt$$

$$= \frac{1}{\pi} \int_0^R \frac{s}{(t + s)^2} B(t) dt + \frac{1}{\pi} \int_R^\infty \frac{[B(R) + B_1(R) \log(t/R)]}{(t + s)^2} ds dt.$$

Since $B(t) \leq B(R)$ for $0 < t < R$ and $s = \alpha R$, we have
A GENERALIZATION OF THE \(\cos \pi \theta \) THEOREM

\[
(b_1)_\theta(s) \leq \frac{1}{\pi} B(R) \int_0^\infty \frac{s}{(t + s)^2} \, dt + \frac{1}{\pi} B_1(R) \int_0^\infty \frac{(\log(t/R))}{(t + s)^2} \, dt
\]

\[
= \frac{1}{\pi} B(R) + \frac{1}{\pi} B_1(R) \int_1^\infty \log t \frac{\alpha}{(t + \alpha)^2} \, dt.
\]

Now \(\log t \alpha/(t + \alpha)^2 < t^{\alpha^2}/(1 + t)^2 \) \((1 < t < \infty, \ 0 < \alpha < 1) \), so the last integral is < 2. Hence

\[
(25) \quad (b_1)_\theta(s) < \pi^{-1} (B(R) + 2B_1(R)).
\]

Using (23), (24), (25) in (22) and remembering \(s = \alpha R \), we obtain

\[
(26) \quad M_2 \leq M_1 + \sup_{0 \leq \theta} |b_1(Re^{i\theta})|.
\]

Putting (27) in (26), and using

\[
B(R) \leq B(\alpha^{-1} R), \quad B_1(R) \leq \frac{1}{(\log \alpha^{-1})} \int_R^{\alpha^{-1} R} B_1(t) \frac{dt}{t} \leq \frac{B(\alpha^{-1} R)}{(\log \alpha^{-1})},
\]

we obtain (21).

5. Proof of key inequality I. We are assuming \(f(0) = 1 \). This implies that \(\nu(z) \), defined by (3), is continuous in the closed upper half plane, with \(\nu(0) = 0 \).

Fix \(R > 0 \). Define \(D \) by \(D = \{z: 0 < |z| < R, \ 0 < \arg z < \beta\} \). Let \(H \) be the bounded harmonic function in \(D \) which has the following boundary values:

\[
H(r) = 0, \quad H(re^{i\theta}) = \nu(re^{i\theta}) \quad (0 < r < R),
\]

\[
H(Re^{i\theta}) = \begin{cases}
2\pi \log M(R, f) & (0 < \theta < \frac{1}{2} \beta), \\
4\pi \log M(R, f) & (\frac{1}{2} \beta < \theta < \beta).
\end{cases}
\]

Let \(\gamma = \beta/\pi \), and define \(b(z) \) in the upper half disk of radius \(R^{1/\gamma} \) by \(b(z) = H(z \gamma) \) \((0 < |z| < R^{1/\gamma}, \ 0 < \arg z < \pi) \). Then \(b \) is the function considered in Proposition 7, with \(B(t) = \nu(\gamma e^{i\beta}) \), the \(R \) there replaced by \(R^{1/\gamma} \), and

\[
(27) \quad g(\phi) = 2\pi \log M(R, f) \quad (0 < \phi < \pi/2),
\]

\[
= 4\pi \log M(R, f) \quad (\pi/2 < \phi < \pi).
\]

The function \(B(t) \) satisfies the hypothesis of Proposition 7, by virtue of Proposition 1.

Let \(s = 2^{-\frac{1}{2}} R \) and let \(0 < r < s \). Using (21), with \(\sigma = \gamma \lambda \ (\beta \lambda/\pi < 1) \) and \(\alpha = 2^{-\frac{1}{2}} \gamma \), we obtain
\[
\begin{align*}
\int_\tau^{1/\gamma} & b_\theta(-t) - \cos \pi \lambda b_\theta(t) \\
& \frac{dt}{t^{1+\sigma}} \\
& > k_1 \frac{b_\theta(r^{1/\gamma})}{r^\lambda} - k_2 \frac{B(2^{\frac{1}{2}} \gamma R^{1/\gamma}) + 4\pi \log M(R)}{s^\lambda},
\end{align*}
\]

where \(k_1, k_2 \) depend on \(\beta \) and \(\lambda \). Now \(b_\theta(t) = \gamma H_\theta(t) \), \(b_\theta(-t) = \gamma H_\theta(t) e^{i\beta} \).

Changing variables in (28), and using \(\beta(2M \gamma R 1/\gamma) = \gamma(2\log M(2\gamma s)) \), we obtain

\[
\int_\tau^{1/\gamma} H_\theta(te^{i\beta}) - \cos \pi \lambda H_\theta(t) \\
\frac{dt}{t^{1+\lambda}} > k_1 \frac{\gamma H_\theta(t)}{r^\lambda} - k_2 \frac{v(2se^{i\beta}) + 4\pi \log M(2\gamma s)}{s^\lambda}.
\]

Since \(v(2se^{i\beta}) \leq 2\pi \log M(2s) \), \(\log M(2\gamma s) \leq \log M(2s) \), we have

\[
\int_\tau^{1/\gamma} H_\theta(te^{i\beta}) - \cos \pi \lambda H_\theta(t) \\
\frac{dt}{t^{1+\lambda}} > k_1 \frac{\gamma H_\theta(t)}{r^\lambda} - k_2 \frac{\log M(2s)}{s^\lambda},
\]

where \(C_1, C_2 \) are positive constants depending on \(\beta \) and \(\lambda \).

By Proposition 1, \(v \) is subharmonic in \(D \). The harmonic function \(H \) majorizes \(v \) on the boundary of \(D \) (since \(v(r) = 0 \) for \(r \geq 0 \) and \(v(Re^{-i\beta}) \leq 2\pi \log M(R) \)). It follows that

\[
(30) \quad u(x) \leq H(x) \quad \text{for all } x \in D.
\]

Since \(v(r) = H(r) = 0 \) for \(r > 0 \), it follows from (30) and Proposition 1 that

\[
(31) \quad H_\theta(r) \geq v_\theta(r) = 2\log M(r) \quad (0 < r < R).
\]

Here, and in what follows, \(H_\theta(r) \) and \(H_\theta(te^{i\beta}) \) are understood to be one-sided derivatives computed from inside \(D \).

I claim that the following inequality also holds:

\[
(32) \quad H_\theta(te^{i\beta}) + H_\theta(t) \leq 2(\mu(t) + \log M(t)) \quad (0 < t < R).
\]

Let us assume (32). Using it together with (31), we find

\[
H_\theta(te^{i\beta}) - \cos \beta \lambda H_\theta(t) = [H_\theta(te^{i\beta}) + H_\theta(t)] - (1 + \cos \beta \lambda) H_\theta(t)
\]

\[
\leq 2(\mu(t) + \log M(t)) - 2(1 + \cos \beta \lambda) \log M(t)
\]

\[
= 2(\mu(t) - \cos \beta \lambda \log M(t)).
\]

Using (33) and (31) in (29), we obtain key inequality I.

To prove (32) we introduce another auxiliary function \(w(z) \). It is defined in the angle \(0 \leq \theta \leq \frac{1}{4} \beta \) by

\[
(34) \quad w(re^{i\theta}) = \sup_E \int_E \log |(re^{i\omega})| \, d\omega \quad (0 < r < \infty, \ 0 \leq \theta \leq \frac{1}{4} \beta).
\]
where the sup is taken over all sets E of the following form:

$$E = [a_1, b_1] \cup [a_2, b_2] \cup [a_3, b_3],$$

with

$$a_1 \leq b_1 \leq a_2 \leq b_2 \leq a_3 \leq b_3,$$

$$b_2 - a_2 = 2\theta, \quad (b_1 - a_1) + (b_3 - a_3) = 2\theta,$$

$$a_2 - b_1 = a_3 - b_2 = \beta - 2\theta.$$

Note that for $\theta = \beta/2$ the sets E are simply intervals of length 2β. Thus $w(\rho e^{i\beta/2}) = v(\rho e^{i\beta}).$

Lemma. (a) w is subharmonic in $0 < \arg z < \frac{1}{2} \beta$ and continuous on $0 \leq \arg z \leq \frac{1}{2} \beta$.

(b) $\limsup_{r \to \frac{1}{2}\beta - \theta} \frac{u(\rho e^{i\beta/2}) - u(\rho e^{i\theta})}{2\theta/2 - \theta} \leq 2(\mu(\rho) + \log M(\rho)) \quad (0 < r < \infty)$.

Once the Lemma is proved, we obtain (32) as follows. Let $D_1 = \{z: 0 < |z| < R, 0 < \arg z < \beta/2\}$ and define $H_1(z)$ on D_1 by

$$H_1(re^{i\theta}) = H(r \exp\{i(\beta/2 + \theta)\}) - H(r \exp\{i(\beta/2 - \theta)\}).$$

Then H_1 is harmonic in D_1 and has the following boundary values:

$$H_1(re^{i\theta}) = 0, \quad H_1(re^{i\beta/2}) = H(re^{i\beta}) \quad (0 \leq r < R),$$

$$H_1(re^{i\theta}) = 2\pi \log M(\rho, f) \quad (0 < \theta < \frac{1}{2}\beta).$$

A look at the definition of w shows

$$u(\rho e^{i\beta/2}) = u(\rho e^{i\beta}) = H(\rho e^{i\beta}) = H_1(\rho e^{i\beta/2}) \quad (0 < r < R),$$

(36)

$$u(\rho) = 0 \quad (0 < r < R), \quad u(\rho e^{i\theta}) \leq 2\pi \log M(\rho, f).$$

Thus H_1 majorizes w on the boundary of D_1, hence it also majorizes w inside D_1. Using this, together with (36), we obtain

$$\limsup_{r \to \frac{1}{2}\beta - \theta} \frac{u(\rho e^{i\beta/2}) - u(\rho e^{i\theta})}{2\theta/2 - \theta} \geq (H_1(\rho e^{i\beta/2}) = H_\theta(re^{i\beta}) + H_\theta(\rho) \quad (0 < r < R),$$

which, together with part (b) of the Lemma, proves (32).

Proof of the Lemma. The continuity statement follows from a routine argument which we leave to the reader.

For $r > 0$, $0 < \rho < r$, $-\pi \leq \psi \leq \pi$, define $r(\psi) > 0$ and $\alpha(\psi) \in (-\pi/2, \pi/2)$ by $r + re^{i\psi} = r(\psi)e^{i\alpha(\psi)}$. With this notation, a function s defined on an open set D is subharmonic in D if and only if it is upper semicontinuous and, if for each $re^{i\theta} \in D$, there exists $\rho_0 > 0$ such that $s(re^{i\theta}) \leq \frac{1}{2}\pi^{-1} \int_{-\pi}^{\pi} s(r(\psi)e^{i(\theta + \alpha(\psi))})d\psi$ holds whenever $0 < \rho < \rho_0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For fixed $re^{i\theta}$ with $0 < r < \infty$, $0 < \theta < \frac{\pi}{2}$ it is easily shown that there exists a set E of the form (35) for which the supremum in (34) is attained. Let a_j, b_j be the endpoints of the intervals defining one such extremal E and set

$$\sigma_1 = \frac{1}{2}(b_1 - a_1), \quad \sigma_2 = \frac{1}{2}(b_2 - a_2),$$

$$\phi_1 = \frac{1}{2}(a_1 + b_1), \quad \phi_2 = \frac{1}{2}(a_2 + b_2), \quad \phi_3 = \frac{1}{2}(a_3 + b_3).$$

In terms of the function u introduced in §2 we have

(37) \[u(re^{i\theta}) = u(r, \sigma_1, \phi_1) + u(r, \theta, \phi_2) + u(r, \sigma_2, \phi_3). \]

Assume $\sigma_1 > 0$. Choose $\rho_0 \in (0, r)$ such that whenever $0 < \rho < \rho_0$ we have $0 < \theta + \alpha(\psi) < \frac{\pi}{2}$, $0 < \sigma_1 + \alpha(\psi) < \frac{\pi}{2}$ $(-\pi \leq \psi \leq \pi)$. Define

$$E(\psi) = [a_1 - a(\psi), b_1 + a(\psi)]$$

$$\cup [a_2 - a(\psi), b_2 + a(\psi)] \cup [a_3 - a(\psi), b_3 - a(\psi)].$$

Then $E(\psi)$ satisfies (35), with θ replaced by $\theta + \alpha(\psi)$. Hence

(38) \[u(\alpha(\psi) \exp[i(\theta + \alpha(\psi))]) \geq \int_{E(\psi)} \log|/(\alpha(\psi) \exp[i \omega])| \, d\omega. \]

Now

$$\int_{E(\psi)} \log|/(\alpha(\psi) e^{i \omega})| \, d\omega = u(\alpha(\psi), \sigma_1 + a(\Psi), \phi_1)$$

$$+ u(\alpha(\psi), \theta + a(\psi), \phi_2) + u(\alpha(\psi), \sigma_2, \phi_3 - a(\psi)).$$

Substitute (39) in (38), divide by 2π, and integrate from $\psi = -\pi$ to $\psi = \pi$. The subharmonicity properties of u mentioned in (2) yield

(40) \[\frac{1}{2\pi} \int_{-\pi}^{\pi} u(\alpha(\psi) \exp[i(\theta + \alpha(\psi))]) \, d\psi \geq u(r, \sigma_1, \phi_1) + u(r, \theta, \phi_2) + u(r, \sigma_2, \phi_3). \]

(We used here the fact that $\int_{0}^{2\pi} u(\alpha(\psi), \sigma_2, \phi_3 - a(\psi)) \, d\psi = \int_{0}^{2\pi} u(\alpha(\psi), \sigma_2, \phi_3 + a(\psi)) \, d\psi.$)

Comparing (40) with (37) we see that u satisfies the criterion for subharmonicity at $re^{i\theta}$. (We were assuming $\sigma_1 > 0$. If $\sigma_1 = 0$ then $\sigma_2 = \theta - \sigma_1 > 0$, and we repeat the above argument with the roles of $[a_1, b_1], [a_3, b_3]$ interchanged.) Thus part (a) of the Lemma is proved.

Recall that $l(r)$ was chosen to be an interval of length 2β such that $\nu(re^{i\theta}) = \int_{l(r)} \log|/(re^{i\omega})| \, d\omega$ and $\mu(r)$ is the inf of $\log|/(re^{i\omega})|$ over $l(r)$. Fix r, and let ω_0 be a point of $l(r)$ such that $\mu(r) = \log|/(re^{i\omega_0})|$. (It may happen that $\mu(r) = -\infty$, but this does not affect the argument.)

Write $l(r) = [a, b]$. Note $b - a = 2\beta$. We have

(41) \[u(re^{i\beta/2}) = \int_{a}^{b} \log|/(re^{i\omega})| \, d\omega. \]
Let $c = \frac{1}{2}(a + b)$. For the proof of (b) we consider five cases.

Case I. $\omega_0 = a$.
Case II. $\omega_0 \in (a, c)$.
Case III. $\omega_0 = c$.
Case IV. $\omega_0 \in (c, b)$.
Case V. $\omega_0 = b$.

Assume Case I. For $0 < \theta < \frac{1}{2} \beta$ define $E(\theta) = [a, a] \cup [a + \beta - 2\theta, a + \beta] \cup [a + 2\beta - 2\theta, b]$. Then $E(\theta)$ has the form (35). Thus

$$u(re^{i\theta}) \geq \int_{E(\theta)} \log |f(re^{i\omega})| \, d\omega. \tag{42}$$

Using this and (41) we see that

$$u(re^{i\beta/2}) - u(re^{i\theta}) \leq \int_a^{a + \beta - 2\theta} + \int_{a + \beta}^{a + 2\beta - 2\theta} \log |f(re^{i\omega})| \, d\omega.$$

Divide by $\beta - 2\theta$ and let $\theta \to \frac{1}{2} \beta$. The result is

$$\limsup_{\theta \to \frac{1}{2} \beta} \frac{u(re^{i\beta/2}) - u(re^{i\theta})}{\beta - 2\theta} \leq \log |f(re^{i\theta})| + \log M(r).$$

Since $\log |f(re^{i\theta})| = \mu(r)$, the inequality above is equivalent to (b).

Now assume Case II. Let $I_1(\theta)$ be the interval with center ω_0 and length $\beta - 2\theta$, and let $I_2(\theta)$ be the interval of length $\beta - 2\theta$ whose left endpoint lies 2θ units to the right of the right endpoint of I_1. For θ sufficiently close to $\frac{1}{2} \beta$ we have $I_1 \cup I_2 \subseteq [a, b]$. Let $E(\theta)$ be the complement of $I_1 \cup I_2$ in $[a, b]$. Then $E(\theta)$ has the form (35). Thus (42) holds, and we have, for θ sufficiently close to $\frac{1}{2} \beta$,

$$u(re^{i\beta/2}) - u(re^{i\theta}) \leq \int_{I_1(\theta)} + \int_{I_2(\theta)} \log |f(re^{i\omega})| \, d\omega.$$}

Divide by $\beta - 2\theta$ and let $\theta \to \frac{1}{2} \beta$. The first term on the right tends to $\mu(r)$ and the second one is dominated by $\log M(r)$. This proves (b) for Case II.

For Case III we let $E(\theta)$ consist of two intervals of length 2θ and one degenerate interval. The right endpoint of the first interval is $\frac{1}{2} \beta - \theta$ units to the left of c, and the left endpoint of the second interval is $\frac{1}{2} \beta - \theta$ units to the right of c. Then $E(\theta)$ has the form (35), and we deduce this time

$$u(re^{i\beta/2}) - u(re^{i\theta}) \leq \int_a^{a + \frac{1}{2} (\beta - \theta)} + \int_{a + \frac{1}{2} (\beta - \theta)}^{b} \log |f(re^{i\omega})| \, d\omega.$$

Divide by $\beta - 2\theta$ and let $\theta \to \frac{1}{2} \beta$. The first term on the right tends to $\mu(r)$ and the sum of the other two is dominated by $\log M(r)$. This proves (b) for Case III.
Cases IV and V are handled in a fashion similar to II and I, respectively. This completes the proof of the Lemma.

6. Proof of key inequality II. We established (18) under the hypothesis that the function $B(t)$ whose Poisson integral is h satisfies $B(0) = 0$. However, the formula is still valid if we only assume

\begin{align*}
B(t) &= B^*(t) + A_1 \log t + A_2, \\
\end{align*}

where B^* satisfies all the hypotheses of the B in §3, and A_1, A_2 are constants. To see this, simply observe that in this case, with obvious notation, $b(re^{i\theta}) = b^*(re^{i\theta}) + \pi^{-1}A_1 \log r + \pi^{-1}A_2 \theta$, and (18) can be established for each of the harmonic functions on the right.

As in §5 we set $B(t) = v(t^\gamma e^{i\beta})$, where $\gamma = \beta/\pi$. We are assuming $\log M(r) = O(r^\lambda)$. Since $v(te^{i\beta}) \leq 2\pi \log M(t)$, it follows that $B(t) = O(t^{\lambda/\pi}) (t \to \infty)$. Since $\beta\lambda/\pi < 1$, $B(t)$ satisfies the growth condition of §3. We can write

\begin{align*}
\log |f(z)| &= \log |f_1(z)| + A_1 \log |z| + A_2
\end{align*}

with f entire and $f_1(0) = 1$. It follows from this that $B(t)$ can be written in the form (43). Let b be the Poisson integral of $B(t)$, as in §2, and define $H(z)$ by $H(z) = b(z^{1/\gamma}) (0 < \arg z < \beta)$. Using (18), we obtain

\begin{align*}
H_\theta(r^\gamma) = \int_0^{r^\gamma} [H_\theta(t^{1/\gamma}) + H_\theta(t^{1/\gamma} e^{i\beta})]Q(r, t) dt.
\end{align*}

To prove our key inequality (8) all we need to do is show that (31) and (32) are true for the H being considered in this section. (In this case these inequalities are to hold for $0 < r < \infty$.)

Consider first (31). The function H and v are harmonic and subharmonic, respectively, in the angle $0 < \arg z < \beta$, and they are equal on the boundary, with the possible exception of $z = 0$, where well-defined boundary values need not exist. However, by considering the decomposition (43) one can easily deduce that in fact $H(re^{i\theta}) - v(re^{i\theta})$ tends to zero uniformly in θ as $r \to 0$. Since v and H are both $O(r^{\lambda})$ in the angle as $r \to \infty$, and since $\beta\lambda < \pi$, we once again can conclude that $v(z) \leq H(z)$ inside the angle. This is exactly what we needed to prove (31).

To prove (32) we define H_1 just as before, except now its domain is the full angle $0 < \arg z < \frac{1}{2}\beta$. Arguing as above, we conclude that H_1 majorizes the function w inside this angle, and the deduction of (32) proceeds as in §5.

REFERENCES

A GENERALIZATION OF THE cos np THEOREM