SOMEWHERE LOCALLY FLAT CODIMENSION ONE MANIFOLDS
WITH 1-ULC COMPLEMENTS ARE LOCALLY FLAT

BY
T. M. PRICE AND C. L. SEEBECK III (1), (2)

ABSTRACT. The purpose of this paper is to prove a taming theorem for a co-
dimension one manifold that is locally flat at some point and has 1-ULC comple-
ment. We also prove that any two sufficiently close locally flat embeddings of a
codimension one manifold are ambient isotopic. Since this paper was first sub-
mitted, R. Daverman has shown that, given any point on a codimension one mani-
fold with 1-ULC complement, some neighborhood of that point lies on a codimen-
sion one sphere that is locally flat at some points and has 1-ULC complement.
Hence the two papers combined prove that a codimension one manifold is locally
flat if and only if its complement is 1-ULC.

Suppose M is a topological (n - 1)-manifold, Q is a topological n-manifold,
and b: M → Int Q is an embedding. We say that b can be locally approximated by
locally flat embeddings if for each x ∈ M there is a neighborhood U of x in M
such that for each ε > 0 there is a locally flat embedding f: U → Q such that
d(f, b|U) < ε. We shall show first that b can be locally approximated by locally
flat embeddings if Q - b(M) is 1-ULC, n ≥ 5, and there is some open set U ⊂ M
such that b|U can be approximated by locally flat embeddings. Then we show
that b(M) is locally flat. Daverman has used this fact to show that b(M) is lo-
cally flat if its complement is 1-ULC.(3) We also obtain that two close locally
flat approximations of a fixed embedding are ambient isotopic by an ε-push.

Received by the editors March 6, 1972 and, in revised form, May 11, 1973 and August

AMS (MOS) subject classifications (1970). Primary 57A15, 57A45; Secondary 57A35,
57A40, 57C30, 57C35.

Key words and phrases. Codimension one, homeomorphic approximation, 1-ULC com-
plement, radial engulfing.

(1) Research of both authors was supported, in part, by NSF.
(2) Mainly because of suggestions from the referee, the present level of readability of
this paper is far superior to that of the original manuscript. Since the readers will probably
never know how indebted they are to his diligence and perseverance, we take it upon our-
selves to express their thanks to him.
(3) A. V. Černavskiǐ has announced a very nice proof of this same result that is inde-
pendent of this paper.
Throughout this paper we will assume that M and Q are topological $(n-1)$- and n-manifolds which are separable metric with metric d. We allow our manifolds to be possibly noncompact and with or without boundary. Throughout we assume that $n \geq 5$. Let $A \cup B \subset Q$ and $\epsilon : Q \to (0, \infty)$ be a map. Denote by $N(A, \epsilon)$ the set \{\(y \in Q \) for some $x \in A$, $d(x, y) < \epsilon(x) \}. A$ homeomorphism H of Q is an ϵ-push of (Q, A) fixed on B if there is an isotopy H_t of Q such that $H_0 =$ Identity, for each $t \in [0, 1]$, $H_t =$ Identity on B and outside $N(A, \epsilon)$, $d(H_t(x), y) < \epsilon(x)$ for each $t \in [0, 1]$ and each $x \in Q$, and $H_1 = H$. Denote by D^k the k-cell $[-1, 1]^k$ and by aD^k the k-cell $[-a, a]^k$ for any $a > 0$. Let $U \subset Q$ be an open set and $x \in Cl U$. U is 1-LC at x if for each $\epsilon > 0$ there is a $\delta > 0$ such that each map $f : \partial D^2 \to N(x, \delta) \cap U$ extends to a map $F : D^2 \to N(x, \epsilon) \cap U$.

For Theorem 1 we use essentially the same notation as in Bryant [1]. Let $b : D^k \times [-1, 1] \to E^n$ be an embedding. We use the following notation:

\[D(a, b) = h(D^k \times [a, b]), \]
\[D(a) = h(D^k \times [a]), \]
\[D(x, a, b) = h(x \times [a, b]), \]
\[N(a, b, \epsilon) = N(D^k \times [a, b]), \]
\[N(D(a, b), \epsilon) = N(D(a, b), \epsilon). \]

Theorem 1. Let $f : D^{n-2} \times [-1, 1] \to E^n$ $(n \geq 5)$ be a topological embedding with $E^n - D(-1, 1)$ 1-ULC at each point of $D(-1, 1)$. Let $\epsilon > 0$. Then there is a PL homeomorphism $b : E^n \to E^n$ such that $b \circ f \circ \pi : D^{n-2} \times [-1, 1] \to E^n$ is an ϵ-approximation of f (where $\pi : D^{n-2} \times [-1, 1] \to D^{n-2} \times [-1, 0]$ is defined by $\pi(x, t) = (x, (t - 1)/2)$).

Proof. Choose real numbers a_0, a_1, \ldots, a_q such that $-1 = a_0 < a_1 < a_2 < \cdots < a_q = 1$, such that diameter $D(x, a_{i-1}, a_i) < \epsilon/3$ for each $x \in D^{n-2}$ and each i $(0 < i \leq q)$ and such that $a_{i-1} > (a_i - 1)/2$. Let $b_i = (a_i - 1)/2$. Then we have $b_{i-1} < b_i < a_{i-1} < a_i$ for each i $(0 < i \leq q)$.

Choose $\epsilon' (0 < \epsilon' < \epsilon/3)$ so that for any x and $x' \in D^{n-2}$ we have distance $(D(x, -1, 1), D(x', -1, 1)) < 3\epsilon'$ implies that distance $(D(x, t), D(x', t)) < \epsilon/3$ for all $t \in [-1, 1]$. Choose $\eta_0 (0 < \eta_0 < \epsilon')$ so that for any $x, x' \in D^{n-2}$ we have distance $(D(x, -1, 1), D(x', -1, 1)) < \eta_0$ implies that $D(x', -1, 1) \subseteq N(D(x, -1, 1), \epsilon')$.

Choose $\eta_1 (0 < \eta_1 < \frac{1}{2} \eta_0)$ so that $N(b_1, a_1; 2\eta_1) \cap [D(-1) \cup D(a_2, 1)] = \emptyset$ and so that for any $x, x' \in D^{n-2}$ distance $(D(x, -1, 1), D(x', -1, 1)) < 2\eta_1$ implies that $D(x', -1, 1) \subseteq N(D(x, -1, 1), \eta_0)$. Choose $\eta_1 (0 < \eta_1 < \eta_0)$ so that $N(b_1, a_1; \eta_1) \cap N(a_1, 1; \eta_1) \subseteq N(a_1, \eta)$. By Bryant's Theorem 4.4, there exists a neighborhood W_1 of $D(a_1, 1)$ and a PL homeomorphism $b_1 : E^n \to E^n$ satisfying

(a) $b_1 =$ identity except on $N(b_1, a_1; \eta_1)$,
(b) $b_1 =$ identity on W_1.

(c) \(D(b_1, 1) \subseteq b_1(N(a_1, 1; \tilde{\eta}_1)\), and

(d) for each \(y \in E^n\) either \(b_1(y) = y\) or there exists an \(x \in D^{n-2}\) such that both \(y\) and \(b_1(y)\) lie in \(N(D(x, b_1, a_1), \tilde{\eta}_1)\).

Furthermore it follows that \(D(b_1, a_2) \subseteq b_1(N(a_1, 2; \eta_2))\). To prove this, see Figure 1 or note that \(D(b_1, a_1) \subseteq D(b_1, 1) \subseteq b_1(N(a_1, 1; \tilde{\eta}_1)\) and that \(D(b_1, a_1) \cap [N(a_1, 1; \tilde{\eta}_1) - N(b_1, a_1; \tilde{\eta}_1)] = \emptyset\). Since \(b_1 = \text{identity except on}\)

![Figure 1](image)

\(N(b_1, a_1; \tilde{\eta}_1)\) it follows that \(D(b_1, a_1) \subseteq b_1(N(a_1, 1; \tilde{\eta}_1) \cap N(b_1, a_1; \tilde{\eta}_1)\) \(\subseteq b_1(N(a_1; \eta_1) \subseteq b_1(N(a_1, a_2; \eta_1)\). Also \(D(a_1, a_2) \subseteq W_1 \cap N(a_1, a_2; \eta_1) = b_1(W_1 \cap N(a_1, a_2; \eta_1) \subseteq b_1(N(a_1, a_2; \eta_1)\). Together we have \(D(b_1, a_2) = D(b_1, a_1) \cup D(a_1, a_2) \subseteq b_1(N(a_1, a_2; \eta_1)\) as claimed.

Now choose \(\eta_2\) \((0 < \eta_2 < \frac{1}{2} \eta_1)\) so that \(N(b_2, a_2; 2 \eta_2) \cap [D(-1, b_1) \cup D(a_2, 1)] = \emptyset\), so that \(N(b_2, a_2; 2 \eta_2) \subseteq b_1(N(a_1, a_2; \eta_1)\) and so that for any \(x, x' \in D^{n-2}\) distance \(\langle D(x, -1, 1), D(x', -1, 1)\rangle < 2 \eta_2\) implies that \(D(x', -1, 1) \subseteq N(D(x, -1, 1), \frac{1}{2} \eta_2)\). Then choose \(\eta_2 < \eta_2 < \eta_2\) so that \(N(b_2, a_2; \eta_2) \cap N(a_2, 1; \tilde{\eta}_2) \subseteq N(a_2, \eta_2)\). Then by Bryant's Theorem 4.4 there exists a neighborhood \(W_2\) of \(D(a_2, 1)\) and a PL homeomorphism \(h_2: E^n \to E^n\) satisfying

(a) \(h_2 = \text{identity except on } N(b_2, a_2; \tilde{\eta}_2)\),
(b) \(b_2 = \text{identity on } W_2\),
(c) \(D(b_2, 1) \subseteq b_2(N(a_2, 1; \tilde{\eta}_2)\), and
(d) for each \(y \in E^n\) either \(b_2(y) = y\) or there exists an \(x \in D^{n-2}\) such that both \(y\) and \(b_2(y)\) lie in \(N(D(x, b_2, a_2), \tilde{\eta}_2)\).

Furthermore, just as for \(b_1\), we can prove that \(D(b_2, a_3) \subseteq b_2(N(a_2, a_3; \eta_2)\).

In general, for \(2 \leq k \leq q\) we choose \(\eta_k\) analogous to \(\eta_2\) above and get \(W_k\) and \(h_k\) from Theorem 4.4. More specifically, choose \(\eta_k\) \((0 < \eta_k < \frac{1}{2} \eta_k)\) so that \(N(b_k, a_k; 2 \eta_k) \cap [D(-1, b_{k-1}) \cup D(a_{k+1}, 1)] = \emptyset\), so that \(N(b_k, a_k; \eta_k) \subseteq b_{k-1}(N(a_{k-1}, a_k; \eta_{k-1})\) and so that for any \(x, x' \in D^{n-2}\) distance \(\langle D(x, -1, 1), D(x', -1, 1)\rangle < 2 \eta_k\).
implies that \(D(x', -1, 1) \subseteq N(D(x, -1, 1), \frac{1}{2}\eta_{k-1}) \). Finally we choose \(\tilde{\eta}_k \)
\((0 < \tilde{\eta}_k < \eta_k)\) so that \(N(b_k, a_k; \tilde{\eta}_k) \cap N(a_k, 1; \eta_k) \subseteq N(a_k; \eta_k) \). Then by Bryant's Theorem 4.4 there exists a neighborhood \(W_k \) of \(D(a_k, 1) \) and a PL homeomorphism \(b_k: E^n \to E^n \) satisfying

(a) \(b_k = \text{identity except on } N(b_k, a_k; \tilde{\eta}_k) \),
(b) \(b_k = \text{identity on } W_k \),
(c) \(D(b_k, 1) \subseteq b_k(N(a_k, 1; \eta_k)) \), and
(d) for each \(y \in E^n \) either \(b_k(y) = y \) or there exists \(x \in D^{n-2} \) such that \(y \) and \(b_k(y) \) lie in \(N(D(x, b_k, a_k; \tilde{\eta}_k), \eta_k) \).

Furthermore the same reasoning as for \(b_1 \) proves that \(D(b_k, a_k+1; \eta_k) \subseteq b_k(N(a_k, a_k+1; \eta_k)) \). Hence \(\eta_{k+1} \) can be chosen, as claimed, to satisfy \(N(b_{k+1}, a_{k+1}; \eta_{k+1}) \subseteq b_k(a_k, a_k+1; \eta_k) \). This property is also used in the next paragraph.

The homeomorphism \(b: E^n \to E^n \) required by the theorem is just \(b = b_1 \circ b_2 \circ \cdots \circ b_n \). We now show that \(b \) has the required properties. First note that \(b_k^{-1} | D(-1, b_k^{-1}) = \text{identity} \), that \(D(b_k, b_k + 1) \subseteq b_k^{-1}(D(-1, b_k^{-1})) \subseteq b_k^{-1}(N(a_k, a_k; \eta_k)) = b_k \circ b_k^{-1}(N(a_k, a_k; \eta_k)) \) so \(b_k^{-1}(D(b_k, b_k + 1)) \subseteq b_k^{-1}(N(a_k, a_k; \eta_k)) \) and finally \(b_k^{-1}(D(b_k)) \subseteq N(a_k, \eta_k) \). Continuing we get

\[b_k^{-1}(D(b_k)) \subseteq N(a_k, b_k + 1; \eta_k) \]

so

\[b_k^{-1}(D(b_k)) = b_k^{-1}(D(b_k)) \subseteq b_k^{-1}(N(a_k, a_k; \eta_k)) \]

From the above statement about \(b_k^{-1} \) it follows immediately that \(b_k^{-1} \circ b_k^{-1}(D(b_k, b_k + 1)) \subseteq N(a_k, a_k; \eta_k) \). Finally \(b_k^{-1} \circ b_k^{-1}(D(b_k)) = b_k^{-1}(D(b_k)) \subseteq N(a_k, a_k; \eta_k) \). In general, for each \(k \) \((1 \leq k \leq q)\) we have \(b_k^{-1} \circ \cdots \circ b_k^{-1}|D(-1, b_k^{-1}) \)

\(= \text{identity} \), \(b_k^{-1} \circ \cdots \circ b_k^{-1}(D(b_k, b_k + 1)) \subseteq b_k^{-1}(D(b_k, b_k + 1)) \subseteq b_k^{-1}(N(a_k, a_k; \eta_k)) \) and for each \(i \) \((k + 1 \leq i < q)\) we have \(b_i^{-1} \circ \cdots \circ b_i^{-1}(D(b_i, b_{i+1})) \subseteq b_i^{-1}(D(b_i, b_{i+1})) \subseteq b_i^{-1}(N(a_i, a_{i+1}; \eta_i)) \). Thus \(b \) has the property that for each \(k \) \((0 \leq k < q)\) \(b(D(b_k, b_k + 1)) \subseteq N(a_k, a_{k+1}; \eta_k) \subseteq N(a_k, a_{k+1}; \eta_k) \). In other words, \(b \) has moved points about the correct distance lengthwise along \(D \).

We now establish that \(b \) has not moved points too far sideways. Let \(y \in E^n \). Then either \(b_k^{-1}(y) = y \) or else there exists an \(x_q \in D^{n-2} \) such that both \(b_k^{-1}(y) \) and \(y \) lie in \(N(D(x_q, -1, 1), \eta_q) \). Similarly either \(b_k^{-1} \circ b_k^{-1}(y) = b_k^{-1}(y) \) or
else there exists an \(x_{q-1} \in D^{n-2} \) such that both lie in \(N(D(x_{q-1}, -1, 1), \eta_{q-1}) \). By our choice of \(\eta_{q-1} \) it follows that either \(h_{q-1}^{-1} \circ h_{q-1}^{-1}(y) = y \) or else both lie in \(N(D(x_{q-1}, -1, 1), \eta_{q-2}) \) for some \(x_{q-1} \in D^{n-2} \). Continuing we get that for each \(k \) \((1 \leq k \leq q) \) either \(b_k^{-1} \circ \ldots \circ b_1^{-1}(y) = y \) or else both lie in \(N(D(x_k, -1, 1), \eta_{k-1}) \) for some \(x_k \in D^{n-2} \). Hence \(b \) has the property that for each \(y \in E^n \) either \(b(y) = y \) or else both lie in \(N(D(x', -1, 1), \eta_0) \) for some \(x' \in D^{n-2} \). In particular, if \(y = f \circ \pi(x, t) \) (with \(a_k \leq t \leq a_{k+1} \)), then \(b(y) \in N(D(x, -1, 1), 2\varepsilon') \). From the last paragraph we know that there exists an \((x'', t'') \) such that \(a_k \leq t'' \leq a_{k+1} \) the distance from \(b(y) \) to \(f(x'', t'') \) is less than \(\varepsilon' \). Hence from our choice of \(\varepsilon' \) we have distance from \(f(x'', t'') \) to \(f(x, t'') \) is less than \(\varepsilon'/3 \) and since distance from \(f(x, t'') \) to \(f(x, t) \) is less than \(\varepsilon/3 \) we have that distance from \(b(y) = b \circ f \circ \pi(x, t) \) to \(f(x, t) \) is less than \(\varepsilon \). \(\square \)

The following is an immediate corollary, but states the result in the form we wish to use later.

Corollary. Let \(M \) be a connected topological \((n-1)\)-manifold and let \(Q \) be a topological \(n \)-manifold in \(M \). Let \(g: M \to \text{Int} Q \) be a topological embedding with \(Q - g(M) \) 1-LC at each point of \(g(M) \). Suppose that \(g \) can be locally approximated by locally flat embeddings at some point of \(M \) (for example, if \(g \) is locally flat at some point of \(M \)), then \(g \) can be locally approximated by locally flat embeddings at each point of \(M \).

Proof. For each \(x \in M \) there exists an open \(n \)-cell \(\bar{O} \subseteq Q \) and an embedding \(f: D^{n-2} \times [-1, 1] \to M \) such that \(x \in \text{Int} f(D^{n-2} \times [-1, 1]) \subseteq \bar{O} \) and \(g \circ f: D^{n-2} \times [-1, 0] \) can be \(\varepsilon \)-approximated by locally flat embeddings for every \(\varepsilon > 0 \). This provides us with a close locally flat approximation \(G \) of \(g \circ f \circ \pi: D^{n-2} \times [-1, 1] \to \bar{O} \) and hence Theorem 1 gives us a homeomorphism \(b: \bar{O} \to \bar{O} \) so that \(b \circ G \) is a close locally flat approximation of \(b \circ g \circ f \circ \pi \) which is in turn close to \(g \circ f \).
\(\rightarrow \text{Cl } V \text{ satisfying the following conditions:} \)

1. \(f_0 = \text{Identity and } g_0 = \text{Identity,} \)
2. \(f_t \mid \text{Cl } V_2 = \text{Identity and } g_t \mid \text{Cl } V_1 = \text{Identity for all } t \in [0, 1], \)
3. \(d(f_t, \text{Id}) < \epsilon \text{ and } d(g_t, \text{Id}) < \epsilon \text{ for all } t \in [0, 1], \)
4. \(f_t(U_1) \subset \text{Cl } V_2 \text{ and } g_t(U_2) \subset \text{Cl } V_1 \text{ and} \)
5. \(f_t(U_1) \cap V_2 = \emptyset = g_t(U_2) \cap V_1 \text{ for all } t \in [0, 1]. \)

Proof. First choose \(a < m_1 < m_2 < m_3 < m_4 < b. \) Let \(N_1 \) be a neighborhood of \(b(dD^{n-1}) \) in \(N \) and \(\delta \) be so small that \(N_1 \epsilon/2 \)-retracts onto \(f(bD^{n-1}) \) for any \(\delta \)-approximation \(f \) of \(b. \) Let \(N_2 \subset N_1 \) be a neighborhood of \(b(M_4D^{n-1}) \) so small that \(N_2 \cap f(D^{n-1}) \subset f(bD^{n-1}) \) for any \(\delta \)-approximation \(f \) of \(b. \) Next we claim that there is a neighborhood \(V' \subset N_2 \) of \(b(M_3D^{n-1}) \) and \(\delta > 0 \) so small that \(f(D^{n-1}) \) separates \(V' \) for any embedding \(f \) such that \(d(f, b) < \delta. \) Let \(V' \subset N_2 \) and \(\delta \) be chosen so that the inclusion \(f: V' \rightarrow E^n - f(\partial D^{n-1}) \) is homotopic to a retraction onto \(f(m_3D^{n-1}) \) for any embedding \(f: D^{n-1} \rightarrow E^n \) such that \(d(f, b) < \delta. \) Now pick points \(x \) and \(y \) in \(V' \) and \(\delta > 0 \) so small that \(f(D^{n-1}) \) does not link \(f(D^{n-1}) \) for any embedding \(f: D^{n-1} \rightarrow E^n \) such that \(d(f, b) < \delta. \) Then \(V' = f(m_3D^{n-1}) \) and \(\delta > 0 \) so small that \(f(D^{n-1}) \) does not link \(f(D^{n-1}) \) for any embedding \(f: D^{n-1} \rightarrow E^n \) such that \(d(f, b) < \delta. \) Now pick points \(x \) and \(y \) in \(V' \) and \(\delta > 0 \) so small that \(f(D^{n-1}) \) does not link \(f(D^{n-1}) \) for any embedding \(f: D^{n-1} \rightarrow E^n \) such that \(d(f, b) < \delta. \) Finally, pick points \(x \) and \(y \) in \(V' \) and \(\delta > 0 \) so small that \(f(D^{n-1}) \) does not link \(f(D^{n-1}) \) for any embedding \(f: D^{n-1} \rightarrow E^n \) such that \(d(f, b) < \delta. \)
Now let \(g: (D^k - aD^k) \times D^{n-k-1} \rightarrow E^n \) be an embedding such that \(d(g, h) \mid (D^k - aD^k) \times D^{n-k-1} < \delta \) and we pick a small neighborhood \(W \) of \(g(\text{Int } bD^k - aD^k) \times \text{Int } bD^{n-k-1}) \) that is separated by the image of \(g \) into two components \(W_1 \) and \(W_2 \) and suppose that

\[
W \cap \text{Image of } g = g((\text{Int } bD^k - aD^k) \times \text{Int } bD^{n-k-1}).
\]

Suppose that \(f: D^{n-1} \rightarrow E^n \) is an embedding such that \(f \) extends \(g \) and \(d(f, h) \) \(< \delta \). Then \(V' \) and \(U' \) are separated by \(f(D^{n-1}) \) into sides \(U'_1 \subset V'_1 \) and \(U'_2 \subset V'_2 \). Suppose that \(W_1 \) and \(W_2 \) are indexed so that \(W_1 \cap V'_2 = \emptyset = W_2 \cap V'_1 \). Then \(U = U' \cup W \) and \(V = V' \cap W \) are separated by \(f(D^{n-1}) \) into components \(U_1 = U'_1 \cup W_1 \), \(U_2 = U'_2 \cup W_2 \), \(V_1 = V'_1 \cup W_1 \), and \(V_2 = V'_2 \cup W_2 \) and \(U_1 \subseteq V_1 \) and \(U_2 \subseteq V_2 \) and \(Cl \ V_1 \cap Cl \ V_2 \subset f(D^{n-1}) \). Therefore it follows from the fact that \(V' \subset N_2 \subset N_1 \) that there are \(\epsilon/2 \)-retractions \(r_1', r_2' \): \(Cl \ V' \rightarrow Cl \ V'_1 \), \(Cl \ V'_2 \), respectively. If \(W \) is chosen sufficiently close to the image of \(g \) then \(r_1' \) and \(r_2' \) can be extended to \(\epsilon/2 \)-retractions \(r_1, r_2: Cl \ V \rightarrow Cl \ V_1 \), \(Cl \ V_2 \), respectively. Similarly it is possible to define homotopies \(f'_1: Cl \ U_1 \rightarrow Cl \ V \) and \(g'_1: Cl \ U_2 \rightarrow Cl \ V \) satisfying the conditions 1'. \(f'_0 = Id, g'_0 = Id \); 2'. \(f'_1 \mid Cl \ U_1 \cap Cl \ V_2 = Id = g'_1 \mid Cl \ U_2 \cap Cl \ V_1 \); 3'. \(d(f'_1, Id) < \epsilon/2 \) and \(d(g'_1, Id) < \epsilon/2 \); 4'. \(f'_1(Cl \ U_1) \subset f(D^{n-1}) \) and \(g'_1(Cl \ U_1) \subset f(D^{n-1}) \). Now define \(f: Cl \ U_1 \cup Cl \ V_2 \rightarrow Cl \ V_1 \) by \(f = r_1 \circ f'_1 \) on \(Cl \ U_1 \) and \(f = Id \) on \(Cl \ V_2 \). Analogously set \(g = r_2 \circ g'_1 \) on \(Cl \ U_2 \) and \(g = Id \) on \(Cl \ V_1 \). Then conditions 1–4 follow in turn from conditions 1'–4' and condition 5 follows from the definitions of \(r_1 \) and \(r_2 \).

Lemma 2. Suppose \(b: D^{n-1} \rightarrow E^n \) is a topological embedding, \(0 < a < 1 \), and \(\epsilon > 0 \). Then there is a \(\delta > 0 \) such that if \(b_0, b_1: D^{n-1} \rightarrow E^n \) are locally flat embeddings such that \(d(b_0, b_1) \mid (D^k - aD^k) \times D^{n-k-1} \)

\[
b_1 \mid (D^k - aD^k) \times D^{n-k-1} \]

\(= b_0 \mid (D^k - aD^k) \times D^{n-k-1} \) then for any neighborhood \(N \) of \(b_1(D^k - aD^{n-k-1}) \) there is an \(\epsilon \)-push \(H \) of \((E^n, b(D^{n-1})) \) such that \(Hb_0(D^k - aD^{n-k-1}) \subset N \).

Proof. Pick \(a' \) and \(b \) so that \(a < a' < b \) and \(b(kD^{n-1}) \subset N(b(aD^{n-1}), \epsilon) \). Then apply Lemma 1 with \(\epsilon \) replaced by \(\epsilon/3 \) and \(a \) replaced by \(a' \). Thus we obtain neighborhoods \(U \subset V \subset N(b(aD^{n-1}), \epsilon) \) such that the conclusions of Lemma 1 are satisfied. Let \(U_1(b_0) \) and \(U_2(b_0) \) be the two sides of \(b(D^{n-1}) \) in \(U \). Similarly define \(U_1(b_1) \) and \(U_2(b_1) \) so that \(U_1(b_0) \) and \(U_2(b_1) \) are on the "same side". Since \(V_2(b_0) \) is 1-LC at each point of \(b_0(D^{n-1}) \cap V_2(b_0) \) and \(V_1(b_1) \) is 1-LC at each point of \(b_1(D^{n-1}) \cap V_2(b_1) \) it is possible to modify the homotopies \(f_t \) and \(g_t \) given in Lemma 1 which retract \(Cl \ U_1(b_0) \cup Cl \ V_2(b_0) \) onto \(Cl \ V_2(b_0) \) and \(Cl \ U_2(b_1) \cup Cl \ V_1(b_1) \) onto \(Cl \ V_1(b_1) \), respectively, and to use radial engulfing (see Proposition 7 and Lemma 2 of [6]). The result is that for any closed set \(C_1 \) of \(Cl \ V_2(b_0) \) and \(C_2 \) of \(Cl \ V_1(b_1) \) such that \(C_1 \cap V \cap b_0(D^{n-1}) = \emptyset = C_2 \cap V \cap b_1(D^{n-1}) \)
C_{2} \cap V \cap b_{1}(D^{n-1})$ there are $\epsilon/2$-pushes F and G of $(E^{n}, h(aD^{n-1}))$ fixed on C_{1} and C_{2}, respectively such that $F(V_{2}(b_{0})) \cup G(V_{1}(b_{1})) \supset U$. However, we can choose C_{1} and C_{2} so that $V \subset C_{1} \cup C_{2} \cup U \cup N(h(D^{k} \times (D^{n-k-1} - a'D^{n-k-1})), \epsilon) \subset F(V_{2}(b_{0})) \cup G(V_{1}(b_{1})) \cup N(h(D^{k} \times (D^{n-k-1} - a'D^{n-k-1})), \epsilon)$. Since F and G can be chosen to be fixed outside V, ϵ can be chosen so small that $G^{-1}Fb_{0}(\text{Int } bD^{k} \times aD^{n-k-1}) \subset V_{1}(b_{1})$. Thus without loss of generality we may assume that $b_{0}((D^{k} - aD^{k}) \times D^{n-k-1} = b_{1}((D^{k} - aD^{k}) \times D^{n-k-1})$, $b_{0}(\text{Int } bD^{k} \times aD^{n-k-1} \subset V_{1}(b_{1})$, and $d(b_{i}, b) < \delta$. It is possible now to modify the homotopies constructed in Lemma 1 and use radial engulfing to construct $\epsilon/2$-pushes F' and G' of $(E^{n}, b(aD^{n-1}))$ fixed on $b_{1}((D^{k} - bD^{k}) \times aD^{n-k-1})$ and on $V_{2}(b_{1})$ such that $F'(V_{2}(b_{1}) \cup N) \cup G'(V_{1}(b_{1})) \cup N(h(D^{k} \times (D^{n-k-1} - a'D^{n-k-1})), \epsilon)) \supset V$. Thus $F_{\epsilon}^{-1}G_{\epsilon}b_{0}(bD^{k} \times aD^{n-k-1}) \subset N$ if ϵ is sufficiently small. But $F_{\epsilon}^{-1}G_{\epsilon}'$ is fixed on $b_{1}((D^{k} - bD^{k}) \times aD^{n-k-1})$ so $F_{\epsilon}^{-1}G_{\epsilon}b_{0}(bD^{k} \times aD^{n-k-1}) \subset N$.

Addendum to Lemma 2. In the case that $b_{0}(bD^{k} \times aD^{n-k-1}) \cap V_{2}(b_{1}) = \emptyset$ the ϵ-push H can be constructed to be fixed on $C_{1}V_{2}(b_{1})$.

Theorem 2. Suppose $b: D^{n-1} \rightarrow E^{n}$ is an embedding and $\epsilon > 0$. Then there is a $\delta > 0$ such that if $b_{0}, b_{1}: D^{n-1} \rightarrow E^{n}$ are locally flat embeddings such that $d(b_{i}, b) < \delta$ and b_{0} agrees with b_{1} on $(D^{k} - \frac{\delta}{2}D^{k}) \times D^{n-k-1}$ then there is an ϵ-push H of $(E^{n}, b(\frac{\delta}{2}D^{n-1}))$ such that $Hb_{0}((D^{k} - \frac{\delta}{2}D^{k}) \times bD^{n-k} = b_{1}((D^{k} - \frac{\delta}{2}D^{k}) \times \frac{\delta}{2}D^{n-k})$.

Proof. The proof is a slight modification of [7] or Lemma 5 of [6]. Let $b_{0}, b_{1}: D^{n-1} \rightarrow E^{n}$ be close locally flat approximations of b and $\frac{\delta}{2} < a < 1$. Then b_{0} and b_{1} can be extended to embeddings of $D^{n} = D^{n-1} \times [-1, 1]$ into E^{n} such that b_{0} and b_{1} agree on $(D^{k} - aD^{k}) \times D^{n-k}$. By first applying Lemma 2 and then modifying b_{0} by squeezing toward the set $b_{1}(D^{n-k})$ it follows that we can assume that $b_{0}(D^{k} \times \frac{\delta}{2}D^{n-k}) \subset b_{1}(D^{n})$. Let $-1 = t_{0} < t_{1} < \cdots < t_{2m} = 1$. We can use Lemma 2 and the Addendum to Lemma 2 to modify b_{0} by an ϵ-push so that for $0 \leq i \leq (m-1)$, $b_{1}^{-1}b_{0}(D^{k} \times aD^{n-k-1} \times t_{2i+1}) \subset D^{n-1} \times (2i, 2i+2)$. Thus for ϵ' small enough and the t_{i} chosen sufficiently dense

$$d(b_{1}^{-1}b_{0}((D^{k} \times aD^{n-k-1} \times [-1, 1], Id))$$

is small. Thus it follows from the Main Lemma of [4] that there is an ϵ'-push H' of (D^{n}, aD^{n}) fixed on ∂D^{n} such that $H'b_{1}^{-1}b_{0}((D^{k} \times \frac{\delta}{2}D^{n-k}) = Id | D^{k} \times \frac{\delta}{2}D^{n-k}$. Thus we can define H to be fixed outside $b_{1}(D^{n})$ and equal $b_{1}H'b_{1}^{-1}$ on $b_{1}(D^{n})$. Then $H(b_{0}(D^{k} \times \frac{\delta}{2}D^{n-k-1} = b_{1}H'b_{1}^{-1}b_{0}((D^{k} \times \frac{\delta}{2}D^{n-k-1} = b_{1}((D^{k} \times \frac{\delta}{2}D^{n-k-1}$.

For ϵ' sufficiently small and a chosen close enough to $\frac{\delta}{2}$, H will be an ϵ-push of $b_{0}(\frac{\delta}{2}D^{n-1})$.
Theorem 3. Suppose M is a topological $(n - 1)$-manifold, Q is a topological n-manifold, $h: M \to \text{Int } Q$ is an embedding and $\epsilon: Q \to R^+$ is a map. Then there is a positive function δ on M such that if $b_0, b_1: M \to Q$ are locally flat embeddings such that $d(h_i(x), b(x)) < \delta(x)$ for all $x \in M$ then there is an ϵ-push H of $(Q, b(M))$ such that $Hb_0 = b_1$.

Proof. The proof is virtually identical to the proof of Theorem 5.1 of [4] using our Theorem 2 instead of their Main Lemma to get b_0 and b_1 to agree on a closed subset in $\text{Int } M$. Then a little push-pull near the boundary does the rest.

Theorem 4. Suppose M and Q are topological $(n - 1)$- and n-manifolds, $h: M \to \text{Int } Q$ is an embedding that can be locally approximated (see introduction) by locally flat embeddings, and ϵ is a nonnegative map on M. Then there is an embedding $f: M \to Q$ such that $d(f(x), h(x)) < \epsilon(x)$ for all $x \in M$ and f is locally flat at any point x for which $\epsilon(x) > 0$.

Proof. It is sufficient to prove the following statement. Suppose A_i is closed in M, A_2 is compact, U_1 and U_2 are open sets such that $U_1 \supset A_1$, $U_2 \supset A_2$ and $b_i = b|U_i$ can be approximated by locally flat embeddings for $i = 1, 2$. Then there is an open set $U \subset M$ such that $A_1 \cup A_2 \subset U$ and $b|U$ can be approximated by locally flat embeddings. Let P_1, P_2 and P_3 be polyhedral neighborhoods of A_1, A_2, and $A_1 \cap A_2$ such that $P_1 \cap P_2 \subset P_3 \subset U_1 \cap U_2$, $P_1 \subset U_1$, and $P_2 \subset U_2$. Choose $\epsilon < \frac{1}{2}d(Q(P_2 - P_3), P_1)$. Let δ be given by Theorem 3 depending on ϵ for $b|P_3$. Then there is an ϵ-push H of (Q, P_3) such that $Hb_2 = b_1$ on P_3. Now define f to be b_1 on P_1 and Hb_2 on P_2. It is clear from $\epsilon < d(Q(P_2 - P_3), P_1)$ that f is an embedding.

Theorem 5. Suppose $h: D^{n-1} \to \text{Int } Q$ is a topological embedding, b can be locally approximated by locally flat embeddings, U is a connected open subset of Q such that $b(\text{Int } D^{n-1}) \subset U$ and U is separated by $b(D^{n-1})$ into components U_1 and U_2, and U_1 is 1-LC at each point of $b(\text{Int } D^{n-1})$. Then $b(\text{Int } D^{n-1})$ has a collar in $\text{Cl } U_1$.

Proof. Suppose $\epsilon: \text{Int } aD^{n-1} \to R^+$ is a map. It follows from Theorem 4 that there is a locally flat $\epsilon(x)$-approximation f of $b|\text{Int } aD^{n-1}$. But from the proof of Lemma 2 we can push $f(\text{Int } aD^{n-1})$ into U_1. Thus it suffices to show that there is a $\delta: \text{Int } aD^{n-1} \to R^+$ such that if $f_0, f_1: \text{Int } aD^{n-1} \to U_1$ are disjoint locally flat $\delta(x)$-approximations of $b|\text{Int } aD^{n-1}$, then there is an embedding $F: \text{Int } aD^{n-1} \times [0, 1] \to U_1$ such that $F(x, i) = f_i(x)$ for $i = 0, 1$ and $\text{diam}(F(x \times [0, 1])) < \epsilon(x)$ for all $x \in \text{Int } aD^{n-1}$. Choose $\epsilon': \text{Int } aD^{n-1} \to R^+$ so small that if $x, y \in \text{Int } aD^{n-1}$, $d(x, y) < \epsilon'(x)$, and $d(f_0(x), f_0(y)) < \epsilon(x)$. Now we can extend such an f_0 to $\overline{\gamma}_0: \text{Int } aD^{n-1} \times [0, 1]$ so that $d(\overline{\gamma}_0(x), \overline{\gamma}_0(y)) < \epsilon(x)$.
wherever \(x, y \in M \times [0, 1] \) and \(d(x, y) < \epsilon'(x) \). From Lemma 2 it follows that we can engulf \(f_1(\text{Int } aD^{n-1}) \) and so we assume that \(f_1(\text{Int } aD^{n-1}) \subset \mathcal{F}_0(M \times [t_0, 1]) \) for some \(t_0 > 0 \) and that \(d(\mathcal{F}) \), incl. \(|M \times 0| < \delta(x) \) where \(\delta(x) \) is chosen from Theorem 5 depending on \(\min \{t/2, \epsilon' \} \). Thus there is an \(\epsilon' \)-push \(H \) of \((M \times [-1, 1], M \times 0) \) such that \(H(x, t_1) = f_0^{-1}f_1(x) \) for all \(x \in M \) and for some fixed \(t_1 > t_0 \). Let \(S_2: [-1, 1] \rightarrow [-1, 1] \) be defined by setting

\[
S_2(x) = \begin{cases}
-1, & x = -1, \\
0, & x = -1/2, \\
t_0, & x = t_0, \\
1, & x = 1
\end{cases}
\]

and extending linearly. Set \(S = \text{Id} \times S_2 : \text{Int } aD^{n-1} \times [-1, 1] \rightarrow \text{Int } aD^{n-1} \times [-1, 1] \). Then set \(F = \mathcal{F}_0S^H S^{-1} : M \times [0, t_1] \rightarrow U_1 \). \(F(x, 0) = f_0(x, 0) = f(x) \), \(F(x, t_1) = f_0S^H S^{-1}f_1(x) = f_1(x) \). But \(t_1 \) can be chosen so small that \(\text{diam } S^H S^{-1}(x \times 0, t_1) < \epsilon'(x) \) for all \(x \in \text{Int } aD^{n-1} \) so \(\text{diam } F(x \times 0, t_1) < \epsilon(x) \) for all \(x \). Using a sequence of such \(F \)'s it can be shown that \(b(\text{Int } aD^{n-1}) \cup f_0(\text{Int } aD^{n-1}) \) is the boundary of an \(n \)-cell; so \(b(\text{Int } aD^{n-1}) \) is locally flat in \(U_1 \) at each point.

Corollary 6. Suppose \(M \) and \(Q \) are topological \((n-1)\)- and \(n \)-manifolds, respectively, and \(b: M \rightarrow \text{Int } Q \) is an embedding such that \(Q = b(M) \) is 1-LC at each point of \(b(M) \) and for some open set \(U \subset M \) there are locally flat approximations of \(b|U \). Then \(b(M) \) is locally flat.

Proof. It follows from Corollary to Theorem 1 that \(b \) can be locally approximated by locally flat embeddings and thus we can apply Theorem 5 on a neighborhood of any point of \(M \). Thus \(b(M) \) is locally flat at each point of \(b(\text{Int } M) \). However, from [3] we then obtain that \(b(M) \) is locally flat.

Theorem 7. Suppose \(b: D^{n-1} \rightarrow E^n \) is an embedding such that \(b|D^{n-2} \times \{-1\} \) is locally flat and \(E^n - b(D^{n-1}) \) is 1-ULC. Then \(b(D^{n-1}) \) is locally flat.

Proof. We adapt a covering argument due to Černavskii [Theorems 1, 2].

Let \(D_+ = D^{n-2} \times [0, 1] \) and \(D_- = D^{n-2} \times [-1, 0] \). First we may assume that \(b: D_+ \rightarrow E^n \) and \(b|D^{n-2} \times \{0\} = \text{Identity} \). Extend \(b \) to \(\partial D_- \cup D_+ \), then restrict \(b \) to \(\partial D \)-union a small enough neighborhood of \(\text{Int } D^{n-2} \times \{0\} \) in \(D_+ \) that the restriction is an embedding. Thus we can find an embedding \(b': \partial D_- \cup D_+ \rightarrow E^n \subset S^n \) such that \(b'(D_+) \subset b(D^{n-1}) \) and \(b'|\partial D_- \) = Identity. Let \(p: E^n \rightarrow S^n - \partial D_- \) be a covering projection such that \(p(E^n \times \{0\}) = \text{Int } D^{n-1} \). There is a lifting \(\tilde{b}' : D_- \rightarrow (D^{n-2} \times \{0\}) \rightarrow E^n \) such that \(\tilde{b}'((0, \cdots, 0, 1)) \in E^n - p^{-1}(\text{Int } D_-) \). Let
$H: E^n \rightarrow E^n$ be an embedding that moves points vertically, is fixed near
$b'((0, \ldots, 0, 1))$, and satisfies $Hb'((D^n - (D^n-2 \times 0)) \subset \mathbb{R}^{-1}(E^n - D^-)$. Define
$f: D^n \rightarrow E^n$ by $f = pHb'$. Then f can be extended by the identity to an embedding
$\tilde{f}: D^{n-1} \rightarrow E^n$. Also $E^n - \tilde{f}(D^{n-1})$ is 1-LC at such point of $\tilde{f}(D^n - (D^n-2 \times 0))$
and so $E^n - \tilde{f}(D^{n-1})$ is 1-ULC. Thus $\tilde{f}(D^{n-1})$ is locally flat by Corollary 6. But
H was fixed near $b'((0, \ldots, 0, 1))$ thus $\tilde{f}(D^n - *)$ has an $(n-1)$-cell in common
with $b(D^{n-1})$ and so again by Corollary 7 $b(D^{n-1})$ is locally flat.

Corollary 8. Suppose M is a compact PL $(n-1)$-manifold, Q is a PL n-manifold, and $b: M \rightarrow \text{Int } Q$ is an embedding that can be locally approximated by locally flat embeddings. Then there is an obstruction in $H^3(M, \mathbb{Z}_2)$ which vanishes if and only if b can be approximated by PL locally flat embeddings.

Proof. It follows from Theorem 5 that b can be approximated by locally flat embeddings and that, for some $\delta > 0$, and two locally flat approximations that are δ-close to b are ambient isotopic by a 1-push of $(Q, b(M))$. Let b_1 be a locally flat δ-approximation of b and let ν_1 be a topological tubular neighborhood of $b_1(M)$ (i.e., an open bicollar). Then ν_1 has two PL structures, namely the structure induced by the PL structure on Q and the product structure induced by $M \times E^1$. Let $\alpha_1 \in H^3(M, \mathbb{Z}_2) \cong H^3(M \times E^1, \mathbb{Z}_2)$ be the obstruction to isotoping the product structure on ν_1 to the induced structure on ν_1. If b_2 is another locally flat δ-approximation of b and $\alpha_2 \in H^3(M, \mathbb{Z}_2)$ is defined analogous to α_1, then, using the fact that b_1 and b_2 are ambient isotopic, it is easy to prove that $\alpha_1 = \alpha_2$. Hence we have a well-defined element α of $H^3(M, \mathbb{Z}_2)$. If $\alpha = 0$, then any such b_1 can be isotoped slightly to be made PL and hence b can be approximated by PL locally flat homeomorphisms. On the other hand, if b can be δ-approximated by a PL locally flat homeomorphism b', then we can use b' for determining α and since b' is PL locally flat the two structures on the tubular neighborhood of $b'(M)$ are the same and hence $\alpha = 0$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52240

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30601