Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Product of ring varieties and attainability


Author: Awad A. Iskander
Journal: Trans. Amer. Math. Soc. 193 (1974), 231-238
MSC: Primary 16A48
DOI: https://doi.org/10.1090/S0002-9947-1974-0349753-0
MathSciNet review: 0349753
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The class of all rings that are Everett extensions of a ring in a variety $ \mathfrak{U}$ by a ring in a variety $ \mathfrak{B}$ is a variety $ \mathfrak{U} \cdot \mathfrak{B}$. With respect to this operation the set of all ring varieties is a partially ordered groupoid (under inclusion), that is not associative. A variety is idempotent iff it is the variety of all rings, or generated by a finite number of finite fields. No families of polynomial identities other than those equivalent to $ x = x$ or $ x = y$ are attainable on the class of all rings or on the class of all commutative rings.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [2] P. M. Cohn, Universal algebra, Harper & Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
  • [3] -, Free rings and their relations, Academic Press, London and New York, 1971. MR 0371938 (51:8155)
  • [4] C. J. Everett, An extension theory for rings, Amer. J. Math. 64 (1942), 363-370. MR 4, 69. MR 0006996 (4:69f)
  • [5] J. Goldman and S. Kass, Linearization in rings and algebras, Amer. Math. Monthly 76 (1969), 348-355. MR 39 #2821. MR 0241481 (39:2821)
  • [6] G. Grätzer, Universal algebra, Van Nostrand, Princeton, N.J., 1968. MR 40 #1320. MR 0248066 (40:1320)
  • [7] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871. MR 15, 392. MR 0058580 (15:392a)
  • [8] N. H. McCoy, Rings and ideals, Carus Monographs Series, no. 8, Open Court, La Salle, Ill., 1948. MR 10, 96. MR 0026038 (10:96b)
  • [9] A. I. Mal'cev, Multiplication of classes of algebraic systems, Sibirsk. Math. Ž. 8 (1967), 364-365 = Siberian Math. J. 2 (1967), 245-267. MR 35 #4140. MR 0213276 (35:4140)
  • [10] -, Algebraic systems, ``Nauka", Moscow, 1970; English transl., Die Grundlehren der math. Wissenschaften, Band 192, Springer-Verlag, Berlin and New York, 1973.
  • [11] B. H. Neumann, Hanna Neumann and P. M. Neumann, Wreath products and varieties of groups, Math. Z. 80 (1962), 44-62. MR 25 #5102. MR 0141705 (25:5102)
  • [12] Hanna Neumann, On varieties of groups and their associated near-rings, Math. Z. 65 (1956), 36-69. MR 17, 1183. MR 0078374 (17:1183d)
  • [13] J. M. Osborn, Varieties of algebras, Advances in Math. 8 (1972), 163-369. MR 44 #6775. MR 0289587 (44:6775)
  • [14] V. A. Parfenov, Varieties of Lie algebras, Algebra i Logika 6 (1967), no. 4, 61-73. (Russian) MR 37 #2825. MR 0227240 (37:2825)
  • [15] O. Schreier, Über die Erweiterung von Gruppen. I, II, Monatsh. Math. Phys. 34 (1926), 165-180. MR 1549403
  • [16] A. L. Šmelkin, The semigroup of group manifolds, Dokl. Akad. Nauk SSSR 149 (1963), 543-545 = Soviet Math. Dokl. 4 (1963), 449-451. MR 27 #1524. MR 0151539 (27:1524)
  • [17] T. Tamura, Attainability of systems of identities on semigroups, J. Algebra 3 (1966), 261-276. MR 32 #7668. MR 0190255 (32:7668)
  • [18] T. Tamura and F. M. Yaqub, Examples related to attainability of identities on lattices and rings, Math. Japon. 10 (1965), 35-39. MR 33 #79. MR 0191852 (33:79)
  • [19] A. Tarski, Equationally complete rings and relation algebras, Nederl. Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 39-46. MR 18, 636. MR 0082961 (18:636d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A48

Retrieve articles in all journals with MSC: 16A48


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0349753-0
Keywords: Associative ring, variety, free ring, T-ideal, polynomial identity, indecomposable, attainable set of identities, Everett extension
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society