Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Group algebras whose simple modules are injective


Authors: Daniel R. Farkas and Robert L. Snider
Journal: Trans. Amer. Math. Soc. 194 (1974), 241-248
MSC: Primary 16A26
DOI: https://doi.org/10.1090/S0002-9947-1974-0357475-5
MathSciNet review: 0357475
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let F be either a field of char 0 with all roots of unity or a field of char $ p > 0$. Let G be a countable group. Then all simple $ F[G]$-modules are injective if and only if G is locally finite with no elements of order char F and G has an abelian subgroup of finite index.


References [Enhancements On Off] (What's this?)

  • [1] R. Brauer, On the representation of a group of order g in the field of g-th roots of unity, Amer. J. Math. 67 (1945), 461-471. MR 7, 238. MR 0014085 (7:238e)
  • [2] E. Formanek and R. L. Snider, Primitive group rings, Proc. Amer. Math. Soc. 36 (1972), 357-360. MR 0308178 (46:7293)
  • [3] G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201. MR 0316505 (47:5052)
  • [4] D. S. Passman, Infinite group rings, Marcel Dekker, New York, 1971. MR 0314951 (47:3500)
  • [5] -, Group rings satisfying a polynomial identity. II, Pacific J. Math. 39 (1971), 425-438. MR 0306253 (46:5379)
  • [6] E. Thoma, Über unitäre Darstellungen abzählbarer, discreter Gruppen, Math. Ann. 153 (1964), 111-138. MR 28 #3332. MR 0160118 (28:3332)
  • [7] O. E. Villamayor, On weak dimension of algebras, Pacific J. Math. 9 (1959), 941-951. MR 21 #7243. MR 0108527 (21:7243)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A26

Retrieve articles in all journals with MSC: 16A26


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0357475-5
Keywords: Injective simple module, group algebra, locally finite groups
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society