Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Transversally parallelizable foliations of codimension two


Author: Lawrence Conlon
Journal: Trans. Amer. Math. Soc. 194 (1974), 79-102
MSC: Primary 57D30
Erratum: Trans. Amer. Math. Soc. 207 (1975), 406.
MathSciNet review: 0370617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study framed foliations such that the framing of the normal bundle can be chosen to be invariant under the linear holonomy of each leaf. In codimension one there is a strong structure theory for such foliations due, e.g., to Novikov, Sacksteder, Rosenberg, Moussu. An analogous theory is developed here for the case of codimension two.


References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
  • [2] Raoul Bott, Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971) Springer, Berlin, 1972, pp. 1–94. Lecture Notes in Math., Vol. 279. Notes by Lawrence Conlon, with two appendices by J. Stasheff. MR 0362335
  • [3] C. Chevalley, Theory of Lie groups. Vol. I, Princeton Math. Series, vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412.
  • [4] André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367–397 (French). MR 0189060
  • [5] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183–194 (French). MR 0263104
  • [6] André Haefliger, Homotopy and integrability, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163. MR 0285027
  • [7] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
  • [8] A. L. Lundell and S. Weingram, The topology of CW complexes, Van Nostrand, New York, 1969.
  • [9] Robert Moussu, Feuilletage sans holonomie d’une variété fermée, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1308–A1311 (French). MR 0263105
  • [10] Robert Moussu, Sur un théorème de Novikov, Rev. Colombiana Mat. 3 (1969), 51–81 (French). MR 0258056
  • [11] Robert Moussu and Robert Roussarie, Une condition suffisante pour qu’un feuilletage soit sans holonomie., C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A240–A243 (French). MR 0276994
  • [12] S. P. Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965), 248–278 (Russian). MR 0200938
  • [13] J. S. Pasternack, Foliations and compact Lie group actions, Comment. Math. Helv. 46 (1971), 467–477. MR 0300307
  • [14] Bruce L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119–132. MR 0107279
  • [15] Harold Rosenberg, Actions of 𝑅ⁿ on manifolds, Comment. Math. Helv. 41 (1966/1967), 170–178. MR 0206978
  • [16] Richard Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79–102. MR 0174061
  • [17] Paul A. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386–400. MR 0356086

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D30

Retrieve articles in all journals with MSC: 57D30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0370617-0
Article copyright: © Copyright 1974 American Mathematical Society