Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generators for $ A(\Omega )$


Authors: N. Sibony and J. Wermer
Journal: Trans. Amer. Math. Soc. 194 (1974), 103-114
MSC: Primary 32E25; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9947-1974-0419838-9
MathSciNet review: 0419838
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a bounded domain $ \Omega $ in $ {{\mathbf{C}}^n}$ and the Banach algebra $ A(\Omega )$ of all continuous functions on $ \bar \Omega $ which are analytic in $ \Omega $. Fix $ {f_1}, \ldots ,{f_k}$ in $ A(\Omega )$. We say they are a set of generators if $ A(\Omega )$ is the smallest closed subalgebra containing the $ {f_i}$. We restrict attention to the case when $ \Omega $ is strictly pseudoconvex and smoothly bounded and the $ {f_i}$ are smooth on $ \bar \Omega $. In this case, Theorem 1 below gives conditions assuring that a given set $ {f_i}$ is a set of generators.


References [Enhancements On Off] (What's this?)

  • [1] O. Forster, Funktionentheoretische Hilfsmittel in der Theorie der kommutativen Banach-Algebren, multigraphed (1971).
  • [2] T. W. Gamelin, Polynomial approximation on thin sets, Lecture Notes in Math., vol. 184, Springer-Verlag, Berlin and New York, 1970, pp. 50-78. MR 0300097 (45:9145)
  • [3] G. M. Henkin, Integral representation of functions holomorphic in strictly pseudo-convex domains and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR Sb. 7 (1969), 597-616. MR 40 #2902. MR 0249660 (40:2902)
  • [4] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966. MR 34 #2933. MR 0203075 (34:2933)
  • [5] I. Lieb, Ein Approximationssatz auf streng pseudokonvexen Gebieten, Math. Ann. 184 (1969), 56-60. MR 41 #7146. MR 0262540 (41:7146)
  • [6] A. Sakai, Localisation theorem for holomorphic approximation on open Riemann surfaces, J. Math. Soc. Japan 24 (1972), 189-197. MR 0299776 (45:8824)
  • [7] A. Sakai, Uniform approximation on compact subsets of complex manifolds (to appear).
  • [8] J. Wermer, Rings of analytic functions, Ann. of Math. (2) 67 (1958), 497-516. MR 20 #3299. MR 0096817 (20:3299)
  • [9] -, An example concerning polynomial convexity, Math. Ann. 139 (1959), 147-150. MR 22 #12238. MR 0121500 (22:12238)
  • [10] N. Kerzman, Hölder and $ {L^p}$ estimates for solutions of $ \bar \partial u = f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. MR 43 #7658. MR 0281944 (43:7658)
  • [11] J.-E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat. 9 (1971), no. 1, 39-54. MR 0385170 (52:6035)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32E25, 46J15

Retrieve articles in all journals with MSC: 32E25, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0419838-9
Keywords: Domain in $ {{\mathbf{C}}^n}$, generators, Banach algebra, polynomial convexity
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society