Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A $ 2$-sphere in $ E\sp{3}$ with vertically connected interior is tame


Authors: J. W. Cannon and L. D. Loveland
Journal: Trans. Amer. Math. Soc. 195 (1974), 345-355
MSC: Primary 57A10
MathSciNet review: 0343273
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A set X in $ {E^3}$ is said to have vertical number n if the intersection of each vertical line with X contains at most n components. The set X is said to have vertical order n if each vertical line intersects X in at most n points. A set with vertical number 1 is said to be vertically connected. We prove that a 2-sphere in $ {E^3}$ with vertically connected interior is tame. This result implies as corollaries several previously known taming theorems involving vertical order and vertical number along with several more general and previously unknown results.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816. MR 0061377 (15:816d)
  • [2] -, Upper semicontinuous decompositions of $ {E^3}$, Ann. of Math. (2) 65 (1957), 363-374. MR 19, 1187. MR 0092960 (19:1187f)
  • [3] -, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 19, 300. MR 0087090 (19:300f)
  • [4] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 24 #A1117. MR 0131265 (24:A1117)
  • [5] -, Each disk in $ {E^3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 26 #4331. MR 0146811 (26:4331)
  • [6] C. E. Burgess, Characterizations of tame surfaces in $ {E^3}$, Trans. Amer. Math. Soc. 114 (1965), 80-97. MR 31 #728. MR 0176456 (31:728)
  • [7] C. E. Burgess and J. W. Cannon, Embeddings of surfaces in $ {E^3}$, Rocky Mountain J. Math. 1 (1971), no. 2, 259-344. MR 43 #4008. MR 0278277 (43:4008)
  • [8] J. W. Cannon, $ \ast $-taming sets for crumpled cubes. I. Basic properties, Trans. Amer. Math. Soc. 161 (1971), 429-440. MR 43 #8065. MR 0282353 (43:8065)
  • [9] -, $ \ast$-taming sets for crumpled cubes. II. Horizontal sections in closed sets, Trans. Amer. Math. Soc. 161 (1971), 441-446. MR 43 #8066. MR 0282354 (43:8066)
  • [10] -, $ \ast$-taming sets for crumpled cubes. III. Horizontal sections in 2-spheres, Trans. Amer. Math. Soc. 161 (1971), 447-456. MR 43 #8067. MR 0282355 (43:8067)
  • [11] P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in $ {E^3}$, Proc. Amer. Math. Soc. 11 (1960), 832-836. MR 23 #A4133. MR 0126839 (23:A4133)
  • [12] W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375-378. MR 39 #957. MR 0239600 (39:957)
  • [13] R. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 10, 317. MR 0027512 (10:317g)
  • [14] Norman Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc. 75 (1969), 370-374. MR 39 #956. MR 0239599 (39:956)
  • [15] R. A. Jensen and L. D. Loveland, Surfaces of vertical order 3 are tame, Bull. Amer. Math. Soc. 76 (1970), 151-154. MR 40 #3520. MR 0250281 (40:3520)
  • [16] L. D. Loveland, A 2-sphere of vertical order 5 bounds a 3-cell, Proc. Amer. Math. Soc. 26 (1970), 674-678. MR 42 #3768. MR 0268871 (42:3768)
  • [17] -, The boundary of a vertically connected cube is tame, Rocky Mountain J. Math. 1 (1971), no. 3, 537-540. MR 44 #1007. MR 0283777 (44:1007)
  • [18] M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, 1937. MR 0044820 (13:483a)
  • [19] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 20 (1919), 169-178. MR 1501119
  • [20] E. E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159-170. MR 15, 889. MR 0061822 (15:889g)
  • [21] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R.I., 1949. MR 10, 614. MR 0029491 (10:614c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0343273-5
PII: S 0002-9947(1974)0343273-5
Keywords: Taming sets, $ \ast $-taming sets, vertical order, vertical number, vertically connected, 2-spheres in $ {E^3}$, surfaces in 3-manifolds
Article copyright: © Copyright 1974 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia