Some mapping theorems

Author:
R. C. Lacher

Journal:
Trans. Amer. Math. Soc. **195** (1974), 291-303

MSC:
Primary 57A15

DOI:
https://doi.org/10.1090/S0002-9947-1974-0350743-2

MathSciNet review:
0350743

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Various mapping theorems are proved, culminating in the following result for mappings *f* from a closed -manifold *M* to another, *N*: If ``almost all'' point-inverses of *f* are strongly acyclic in dimensions less than *k* and if ``almost all'' point-inverses of *f* have Euler characteristic equal to one, then all but finitely many point-inverses are totally acyclic. (Here ``almost all'' means ``except on a zero-dimensional set in *N*".) More can be said when : If *f* is a monotone map between closed 3-manifolds and if the Euler characteristic of almost-all point-inverses is one, then all but finitely many point-inverses of *f* are cellular in *M*; consequently *M* is the connected sum of *N* and some other closed 3-manifold and *f* is homotopic to a spine map. Other results include an acyclicity criterion using the idea of ``nonalternating'' mapping and the following result for PL maps between finite polyhedra *X* and *Y*: If the Euler characteristic of each point-inverse of is the integer *c* then .

**[1]**S. Armentrout,*UV-properties of compact sets*, Trans. Amer. Math. Soc.**143**(1969), 487-498. MR**42**#8451. MR**0273573 (42:8451)****[2]**-,*Cellular decompositions of*3-*manifolds that yield*3-*manifolds*, Mem. Amer. Math. Soc. No. 107 (1971). MR**0413104 (54:1225)****[3]**E. G. Begle,*The Vietoris mapping theorem for bicompact spaces*, Ann. of Math. (2)**51**(1950), 534-543. MR**11**, 677. MR**0035015 (11:677b)****[4]**R. H. Bing,*The monotone mapping problem*, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 99-115. MR**43**#1136. MR**0275379 (43:1136)****[5]**G. E. Bredon,*Sheaf theory*, McGraw-Hill, New York, 1967. MR**36**#4552. MR**0221500 (36:4552)****[6]**H. Cartan and S. Eilenberg,*Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956. MR**17**, 1040. MR**0077480 (17:1040e)****[7]**R. C. Lacher,*Cellularity criteria for maps*, Michigan Math. J.**17**(1970), 385-396. MR**43**#5539. MR**0279818 (43:5539)****[8]**-,*Finiteness theorems in the study of mappings between manifolds*, Proc. Conf. Top. (Univ. of Oklahoma, 1972), Dept. of Math., University of Oklahoma, Norman, 1972, pp. 79-96. MR**0370593 (51:6820)****[9]**R. C. Lacher and D. R. McMillan, Jr.,*Partially acyclic mappings between manifolds*, Amer. J. Math.**94**(1972), 246-266. MR**46**#898. MR**0301743 (46:898)****[10]**L. C. Siebenmann,*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271-294. MR**45**#4431. MR**0295365 (45:4431)****[11]**E. G. Skljarenko,*Almost acyclic mappings*, Mat. Sb.**75**(117) (1968), 296-302 = Math. USSR Sb.**4**(1968), 267-272. MR**37**#4806. MR**0229232 (37:4806)****[12]**-,*Homology theory and the exactness axiom*, Uspehi Mat. Nauk**24**(1969), no. 5 (149), 87-140 = Russian Math. Surveys**24**(1969), no. 5, 91-142. MR**41**#7676. MR**0263071 (41:7676)****[13]**R. Soloway,*Somewhere acyclic mappings of manifolds are compact*, Ph.D. Thesis, University of Wisconsin, 1971.**[14]**E. H. Spanier,*Algebraic topology*, McGraw-Hill, New York, 1966. MR**35**#1007. MR**0210112 (35:1007)****[15]**D. Sullivan,*Combinatorial invariants of analytic spaces*, Proc. of Liverpool Singularities-Sympos., I (1969/70), Lecture Notes in Math., vol. 192, Springer, Berlin, 1971, pp. 165-168. MR**43**#4063. MR**0278333 (43:4063)****[16]**G. T. Whyburn,*Analytic topology*, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR**4**, 86. MR**0007095 (4:86b)****[17]**A. H. Wright,*Mappings from*3-*manifolds onto*3-*manifolds*, Trans. Amer. Math. Soc.**167**(1972), 479-495. MR**0339186 (49:3949)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57A15

Retrieve articles in all journals with MSC: 57A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0350743-2

Keywords:
Mapping,
acyclic,
finiteness,
cellularity

Article copyright:
© Copyright 1974
American Mathematical Society