On free products of finitely generated abelian groups

Author:
Anthony M. Gaglione

Journal:
Trans. Amer. Math. Soc. **195** (1974), 421-430

MSC:
Primary 20F05

MathSciNet review:
0360840

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let the group *G* be a free product of a finite number of finitely generated abelian groups. Let be its commutator subgroup. It is proven here that the ``quasi-*G*-simple'' commutators, defined below, are free generators of .

**[1]**Michael Anshel and Robert Prener,*On free products of finite abelian groups*, Proc. Amer. Math. Soc.**34**(1972), 343–345. MR**0302768**, 10.1090/S0002-9939-1972-0302768-4**[2]**S. Bachmuth,*Automorphisms of free metabelian groups*, Trans. Amer. Math. Soc.**118**(1965), 93-104. MR**0180597**, 10.1090/S0002-9947-1965-0180597-3**[3]**K. W. Gruenberg,*Residual properties of infinite soluble groups*, Proc. London Math. Soc. (3)**7**(1957), 29–62. MR**0087652****[4]**Marshall Hall Jr.,*The theory of groups*, The Macmillan Co., New York, N.Y., 1959. MR**0103215****[5]**W. Magnus, A. Karass and D. Solitar,*Combinatorial group theory*:*Presentations of groups in terms of generators and relations*. Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR**34**#7617.**[6]**R. A. Prener,*The lower central series of special groups generated by elements of order two*, Ph.D. Thesis, The Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 1969.**[7]**Hermann V. Waldinger,*Addendum to: “The lower central series of groups of a special class”*, J. Algebra**25**(1973), 172–175. MR**0316569****[8]**Hermann V. Waldinger,*The lower central series of groups of a special class*, J. Algebra**14**(1970), 229–244. MR**0260882****[9]**Hermann V. Waldinger,*Two theorems in the commutator calculus*, Trans. Amer. Math. Soc.**167**(1972), 389–397. MR**0294467**, 10.1090/S0002-9947-1972-0294467-7

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20F05

Retrieve articles in all journals with MSC: 20F05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0360840-3

Keywords:
Free product of groups,
free group,
finitely generated abelian group,
free generator,
basic commutator,
commutator subgroup,
dimension,
"*G*-simple basic commutator",
"quasi-*G*-simple'' commutator,
rewriting process

Article copyright:
© Copyright 1974
American Mathematical Society