Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

The closure of the space of homeomorphisms on a manifold


Author: William E. Haver
Journal: Trans. Amer. Math. Soc. 195 (1974), 401-419
MSC: Primary 57E05; Secondary 57A20
MathSciNet review: 0362375
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The space, $ \bar H(M)$, of all mappings of the compact manifold M onto itself which can be approximated arbitrarily closely by homeomorphisms is studied. It is shown that $ \bar H(M)$ is homogeneous and weakly locally contractible. If M is a compact 2-manifold without boundary, then $ \bar H(M)$ is shown to be locally contractible.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
  • [2] R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67. MR 38 #6634. MR 0238358 (38:6634)
  • [3] -, Spaces of homeomorphisms of finite graphs (to appear).
  • [4] S. Armentrout, Concerning cellular decompositions of 3-manifolds that yield 3-manifolds, Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 37 #5859. MR 0230296 (37:5859)
  • [5] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b. MR 0117695 (22:8470b)
  • [6] A. V. Černavskii, Local contractibility of the homeomorphism group of a manifold, Dokl. Akad. Nauk SSSR 182 (1968), 510-513 = Soviet Math. Dokl. 9 (1968), 1171-1174. MR 38 #5241. MR 0236948 (38:5241)
  • [7] R. D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63-88. MR 44 #1032. MR 0283802 (44:1032)
  • [8] S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613-622. MR 4, 87. MR 0007100 (4:87e)
  • [9] R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions. I, Topology 11 (1972), 159-177. MR 45 #4349. MR 0295281 (45:4349)
  • [10] R. Geoghegan and D. W. Henderson, Stable function spaces (to appear). MR 0339269 (49:4029)
  • [11] O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389-408. MR 13, 266. MR 0043459 (13:266d)
  • [12] W. Haver, Homeomorphisms and $ U{V^\infty }$ maps, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N. Y., 1970), State Univ. of New York at Binghamton, Binghamton, N. Y., 1971, pp. 112-121. MR 44 #1000. MR 0283770 (44:1000)
  • [13] -, Monotone mappings of a two-disk onto itself which fix the disk's boundary can be canonically approximated by homeomorphisms, Pacific J. Math. (to appear).
  • [14] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [15] C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731. MR 40 #4941. MR 0251714 (40:4941)
  • [16] -, Cell-like mappings. II, Pacific J. Math. 35 (1970), 649-660. MR 43 #6936. MR 0281217 (43:6936)
  • [17] J. A. Lees, Immersions and surgeries of topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529-534. MR 39 #959. MR 0239602 (39:959)
  • [18] W. K. Mason, The space $ H(M)$ of homeomorphisms of a compact manifold onto itself is homeomorphic to $ H(M)$ minus any 6-compact set, Amer. J. Math. 92 (1970), 541-551. MR 43 #6953. MR 0281234 (43:6953)
  • [19] -, The space of all self-homeomorphisms of a two-cell which fix the cell's boundary in an absolute retract, Trans. Amer. Math. Soc. 161 (1971), 185-205. MR 44 #3283. MR 0286067 (44:3283)
  • [20] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294. MR 45 #4431. MR 0295365 (45:4431)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E05, 57A20

Retrieve articles in all journals with MSC: 57E05, 57A20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0362375-0
PII: S 0002-9947(1974)0362375-0
Keywords: Spaces of homeomorphisms, cellular mappings, closure of the space of homeomorphisms, compact manifolds, infinite dimensional manifolds, homogeneous spaces
Article copyright: © Copyright 1974 American Mathematical Society