Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Maximal quotients of semiprime PI-algebras


Author: Louis Halle Rowen
Journal: Trans. Amer. Math. Soc. 196 (1974), 127-135
MSC: Primary 16A38
MathSciNet review: 0347887
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: J. Fisher [3] initiated the study of maximal quotient rings of semiprime PI-rings by noting that the singular ideal of any semiprime Pi-ring R is 0; hence there is a von Neumann regular maximal quotient ring $ Q(R)$ of R. In this paper we characterize $ Q(R)$ in terms of essential ideals of C = cent R. This permits immediate reduction of many facets of $ Q(R)$ to the commutative case, yielding some new results and some rapid proofs of known results. Direct product decompositions of $ Q(R)$ are given, and $ Q(R)$ turns out to have an involution when R has an involution.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, On rings of quotients, Istituto Nazionale di Alta Matematica, Symposia Matematica, vol. VIII, 1972. MR 0332855 (48:11180)
  • [2] E. Armendariz and S. Steinberg, Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc. 190 (1974), 417-425. MR 0354763 (50:7240)
  • [3] J. W. Fisher, Structure of semiprime P.I. rings. I, Proc. Amer. Math. Soc. 39 (1973), 465-467. MR 0320049 (47:8590)
  • [4] E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132. MR 46 #1833. MR 0302689 (46:1833)
  • [5] R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392. MR 26 #1331. MR 0143779 (26:1331)
  • [6] W. S. Martindale III, On semiprime P.I. rings, Proc. Amer. Math. Soc. 40 (1973), 365-369. MR 0318215 (47:6762)
  • [7] C. Procesi, On a theorem of M. Artin, J. Algebra 22 (1972), 309-315. MR 46 #1825. MR 0302681 (46:1825)
  • [8] L. H. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223. MR 0309996 (46:9099)
  • [9] -, A subdirect decomposition of semiprime rings and its application to maximal quotient rings, Proc. Amer. Math. Soc. (to appear). MR 0349728 (50:2221)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A38

Retrieve articles in all journals with MSC: 16A38


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0347887-8
PII: S 0002-9947(1974)0347887-8
Keywords: Essential, identity, injective hull, involution, maximal quotient algebra, PI-algebra, semiprime, singular ideal
Article copyright: © Copyright 1974 American Mathematical Society