Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the zeros of Dirichlet $ L$-functions. I


Author: Akio Fujii
Journal: Trans. Amer. Math. Soc. 196 (1974), 225-235
MSC: Primary 10H10
MathSciNet review: 0349603
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A mean value theorem for $ \arg \;L({\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.... ...e 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + it,\chi )$ is established. This yields mean estimates for the number of zeros of $ L(s,\chi )$ in small boxes.


References [Enhancements On Off] (What's this?)

  • [1] A. F. Lavrik, The approximate functional equation for Dirichlet 𝐿-functions, Trudy Moskov. Mat. Obšč. 18 (1968), 91–104 (Russian). MR 0236126
  • [2] Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 0020594
  • [3] Atle Selberg, Contributions to the theory of Dirichlet’s 𝐿-functions, Skr. Norske Vid. Akad. Oslo. I. 1946 (1946), no. 3, 62. MR 0022872

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10H10

Retrieve articles in all journals with MSC: 10H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0349603-2
Keywords: Riemann zeta function, Dirichlet L-functions, distribution of zeros
Article copyright: © Copyright 1974 American Mathematical Society