Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On certain convex sets in the space of locally schlicht functions


Authors: Y. J. Kim and E. P. Merkes
Journal: Trans. Amer. Math. Soc. 196 (1974), 217-224
MSC: Primary 30A32; Secondary 30A98
MathSciNet review: 0349981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H = H{(^ \ast },[ + ])$ denote the real linear space of locally schlicht normalized functions in $ \vert z\vert < 1$ as defined by Hornich. Let K and C respectively be the classes of convex functions and the close-to-convex functions. If $ M \subset H$ there is a closed nonempty convex set in the $ \alpha \beta $-plane such that for $ (\alpha ,\beta )$ in this set $ {\alpha ^ \ast }f[ + ]{\beta ^ \ast }g \in C$ (in K) whenever f, $ g \in M$. This planar convex set is explicitly given when M is the class K, the class C, and for other classes. Some consequences of these results are that K and C are convex sets in H and that the extreme points of C are not in K.


References [Enhancements On Off] (What's this?)

  • [1] W. M. Causey, The close-to-convexity and univalence of an integral. Math. Z. 99 (1967), 207-212. MR 35 #6807. MR 0215972 (35:6807)
  • [2] J. A. Cima and J. A. Pfaltzgraff, A Banach space of locally univalent functions, Michigan Math. J. 17 (1970), 321-334. MR 43 #3784. MR 0278052 (43:3784)
  • [3] H. Hornich, Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, Monatsh. Math. 73 (1969), 36-45. MR 39 #4411. MR 0243087 (39:4411)
  • [4] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. MR 14, 966. MR 0054711 (14:966e)
  • [5] E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100. MR 42 #4720. MR 0269825 (42:4720)
  • [6] M. Nunokowa, On the univalence of a certain integral, Trans. Amer. Math. Soc. 146 (1969), 439-446. MR 40 #4436. MR 0251205 (40:4436)
  • [7] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385-387. MR 32 #1342. MR 0183866 (32:1342)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A32, 30A98

Retrieve articles in all journals with MSC: 30A32, 30A98


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0349981-4
PII: S 0002-9947(1974)0349981-4
Keywords: Univalent, convex close-to-convex, extreme point
Article copyright: © Copyright 1974 American Mathematical Society