Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spectrum and direct integral


Author: Edward A. Azoff
Journal: Trans. Amer. Math. Soc. 197 (1974), 211-223
MSC: Primary 47B40
DOI: https://doi.org/10.1090/S0002-9947-1974-0350494-4
MathSciNet review: 0350494
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T = \smallint _Z^ \oplus T(\mathcal{E})$ be a direct integral of Hilbert space operators, and equip the collection $ \mathcal{C}$ of compact subsets of C with the Hausdorff metric topology. Consider the [set-valued] function sp which associates with each $ \mathcal{E} \in Z$ the spectrum of $ T(\mathcal{E})$. The main theorem of this paper states that sp is measurable.

The relationship between $ \sigma (T)$ and $ \{ \sigma (T(\mathcal{E}))\} $ is also examined, and the results applied to the hyperinvariant subspace problem. In particular, it is proved that if $ \sigma (T(\mathcal{E}))$ consists entirely of point spectrum for each $ \mathcal{E} \in Z$, then either T is a scalar multiple of the identity or T has a hyperinvariant subspace; this generalizes a theorem due to T. Hoover.


References [Enhancements On Off] (What's this?)

  • [1] T. R. Chow, A spectral theory for direct integrals of operators, Math. Ann. 188 (1970), 285-303. MR 42 #3598. MR 0268701 (42:3598)
  • [2] D. Deckard and C. Pearcy, On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322-328. MR 26 #5438. MR 0147926 (26:5438)
  • [3] J. Dixmier, Les algébres d'opérateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
  • [4] R. G. Douglas and C. Pearcy, Hyperinvariant subspaces and transitive algebras, Michigan Math. J. 19 (1972), 1-12. MR 45 #4186. MR 0295118 (45:4186)
  • [5] F. Gilfeather, On a functional calculus for decomposable operators and applications to normal, operator-valued functions, Trans. Amer. Math. Soc. 176 (1973), 369-383. MR 0312301 (47:863)
  • [6] -, Operator-valued roots of abelian analytic functions, Bull. Amer. Math. Soc. 20 (1973), A154.
  • [7] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [8] F. Hausdorff, Mengenlehre, 3rd. ed., de Gruyter, Berlin, 1937; English transl., Chelsea, New York, 1957. MR 19, 111.
  • [9] T. Hoover, Hyperinvariant subspaces for n-normal operators, Acta. Sci. Math. (Szeged) 32 (1971), 449-461. MR 0308816 (46:7930)
  • [10] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397-403. (Russian) MR 32 #6421. MR 0188994 (32:6421)
  • [11] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 13, 54. MR 0042109 (13:54f)
  • [12] C. M. Pearcy, Entire functions on infinite von Neumann algebras of type I, Michigan Math. J. 11 (1964), 1-7. MR 28 #4381. MR 0161173 (28:4381)
  • [13] H. Radjavi and P. Rosenthal, Hyperinvariant subspaces for spectral and n-normal operators, Acta. Sci. Math. (Szeged) 32 (1971), 121-125. MR 0308817 (46:7931)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B40

Retrieve articles in all journals with MSC: 47B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0350494-4
Keywords: Spectrum, direct integral, measurable set-valued function, finite topology, hyperinvariant subspace
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society