Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Commutative twisted group algebras


Author: Harvey A. Smith
Journal: Trans. Amer. Math. Soc. 197 (1974), 315-326
MSC: Primary 22D15; Secondary 46J20
DOI: https://doi.org/10.1090/S0002-9947-1974-0364538-7
MathSciNet review: 0364538
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A twisted group algebra $ {L^1}(A,G;T,\alpha )$ is commutative iff A and G are, T is trivial and $ \alpha $ is symmetric: $ \alpha (\gamma ,g) = \alpha (g,\gamma )$. The maximal ideal space $ {L^1}(A,G;\alpha )\hat \emptyset $ of a commutative twisted group algebra is a principal $ G\hat \emptyset $ bundle over $ A\hat \emptyset $. A class of principal $ G\hat \emptyset $ bundles over second countable locally compact M is defined which is in 1-1 correspondence with the (isomorphism classes of) $ {C_\infty }(M)$-valued commutative twisted group algebras on G. If G is finite only locally trivial bundles can be such duals, but in general the duals need not be locally trivial.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62 (1966). MR 34 #7723. MR 0207910 (34:7723)
  • [2] R. C. Busby, On the equivalence of twisted group algebras and Banach $ ^ \ast $-algebraic bundles, Proc. Amer. Math. Soc. 37 (1973), 142-148. MR 0315469 (47:4018)
  • [3] -, Centralizers of twisted group algebras, Pacific J. Math. 47 (1973), 357-392. MR 0333595 (48:11920)
  • [4] R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 41 #9013. MR 0264418 (41:9013)
  • [5] C. M. Edwards and J. T. Lewis, Twisted group algebras. I, II, Comm. Math. Phys. 13 (1969), 119-141. MR 40 #6279. MR 0253064 (40:6279)
  • [6] J. M. G. Fell, An extension of Mackey's method to Banach $ ^\ast$-algebraic bundles, Mem. Amer. Math. Soc. No. 90 (1969). MR 41 #4255. MR 0259619 (41:4255)
  • [7] D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821. MR 0229247 (37:4821)
  • [8] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450. MR 0159233 (28:2450)
  • [9] G. P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429. MR 21 #5910. MR 0107185 (21:5910)
  • [10] H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc. 139 (1969), 359-369. MR 38 #6029. MR 0237748 (38:6029)
  • [11] A. Kleppner, Multipliers on Abelian groups, Math. Ann. 158 (1965), 11-34. MR MR 30 #4856. MR 0174656 (30:4856)
  • [12] H. Leptin, Verallgemeinerte $ {L^1}$-Algebren, Math. Ann. 159 (1965), 51-76. MR 39 #1909.
  • [13] -, Verallgemeinerte $ {L^1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, Invent. Math. 3 (1967), 257-281. MR 37 #5328.
  • [14] -, Verallgemeinerte $ {L^1}$-Algebren und projektive Darstellungen lokal kompakter Gruppen. II, Invent. Math. 4 (1967), 68-86. MR 37 #5328. MR 0229754 (37:5328)
  • [15] M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; 22 #1824.
  • [16] N. E. Steenrod, Topology of fibre bundles, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N. J., 1951. MR 12, 522. MR 0039258 (12:522b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D15, 46J20

Retrieve articles in all journals with MSC: 22D15, 46J20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0364538-7
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society