Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On sums and products of unbounded operators in Hilbert space

Author: M. J. J. Lennon
Journal: Trans. Amer. Math. Soc. 198 (1974), 273-285
MSC: Primary 47A60; Secondary 47A99
MathSciNet review: 0350472
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The characteristic matrices (in the sense of Stone) of the sum and product of two closed linear operators in Hilbert space are found in terms of the characteristic matrix of each operator. From these, necessary and sufficient conditions for the domain of the sum or product to be dense are found, and a new simple condition for the density of the domain of the sum is proved. The ideas developed are applied to the direct integral decomposition of closed linear operators.

References [Enhancements On Off] (What's this?)

  • [1] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969.
  • [2] A. E. Nussbaum, Reduction theory for unbounded closed operators in Hilbert space, Duke Math. J. 31 (1964), 33–44. MR 0159221
  • [3] Robert Pallu de la Barrière, Décomposition des opérateurs non bornés dans les sommes continues d’espaces de Hilbert, C. R. Acad. Sci. Paris 232 (1951), 2071–2073 (French). MR 0041360
  • [4] M. H. Stone, On unbounded operators in Hilbert space, J. Indian Math. Soc. (N.S.) 15 (1951), 155–192 (1952). MR 0052042
  • [5] John von Neumann, Functional Operators. II. The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, no. 22, Princeton University Press, Princeton, N. J., 1950. MR 0034514

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A60, 47A99

Retrieve articles in all journals with MSC: 47A60, 47A99

Additional Information

Keywords: Unbounded linear operators, characteristic matrix, direct integral of operators
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society