Perturbed semigroup limit theorems with applications to discontinuous random evolutions

Author:
Robert P. Kertz

Journal:
Trans. Amer. Math. Soc. **199** (1974), 29-53

MSC:
Primary 60J75; Secondary 47D05

DOI:
https://doi.org/10.1090/S0002-9947-1974-0362521-9

MathSciNet review:
0362521

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For small, let and be strongly continuous semigroups of linear contractions on a Banach space with infinitesimal operators and respectively, where as . Let be a family of linear operators on satisfying as . Assume that is the infinitesimal operator of a strongly continuous contraction semigroup on and that for each exists. We give conditions under which converges as to the semigroup generated by the closure of on . If , and we let , then we show that converges as to the strongly continuous contraction semigroup generated by the closure of .

From these results we obtain new limit theorems for discontinuous random evolutions and new characterizations of the limiting infinitesimal operators of the discontinuous random evolutions. We apply these results in a model for the approximation of physical Brownian motion and in a model of the content of an infinite capacity dam.

**[1]**R. M. Blumenthal and R. K. Getoor,*Markov processes and potential theory*, Pure and Appl. Math., vol.**29**, Academic Press, New York, 1968. MR**41**#9348. MR**0264757 (41:9348)****[2]**E. Çinlar and M. Pinsky,*A stochastic integral in storage theory*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**17**(1971), 227-240. MR**45**#1281. MR**0292194 (45:1281)****[3]**R. Cogburn and R. Hersh,*Two limit theorems for random differential equations*, Indiana Univ. Math. J.**22**(1973), 1067-1089. MR**0319267 (47:7811)****[4]**J. L. Doob,*Stochastic processes*, Wiley, New York; Chapman & Hall, London, 1953. MR**15**, 445. MR**0058896 (15:445b)****[5]**E. B. Dynkin,*Markov processes*, Fizmatgiz, Moscow, 1963; English transl., Vol. I, Die Grundlehren der math. Wissenschaften, Bände**121**, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR**33**#1886; #1887. MR**0193670 (33:1886)****[6]**R. Griego and R. Hersh,*Theory of random evolutions with applications to partial differential equations*, Trans. Amer. Math. Soc.**156**(1971), 405-418. MR**43**#1261. MR**0275507 (43:1261)****[7]**R. Hersh and G. C. Papanicolaou,*Non-commuting random evolutions, and an operator-valued Feynman-Kac formula*, Comm. Pure Appl. Math.**25**(1972), 337-367. MR**0310940 (46:10038)****[8]**E. Hille and R. S. Phillips,*Functional analysis and semi-groups*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol.**31**, Amer. Math. Soc, Providence, R. I., 1957. MR**19**. 664. MR**0089373 (19:664d)****[9]**A. M. Il'in and R. Z. Has'minskii,*On equations of Brownian motion*, Teor. Verojatnost. i Primenen.**9**(1964), 466-491 = Theor. Probability Appl.**9**(1964), 421-444. MR**29**#5283. MR**0168018 (29:5283)****[10]**R. P. Kertz,*Limit theorems for discontinuous random evolutions*, Ph. D. Dissertation, Northwestern University, Evanston, Ill., 1972.**[11]**-,*Limit theorems for discontinuous random evolutions with applications to initial value problems and to Markov processes on -lines*, Ann. Probability (to appear). MR**0368180 (51:4421)****[12]**T. G. Kurtz,*Extensions of Trotter's operator semi-group approximation theorems*, J. Functional Analysis**3**(1969), 354-375. MR**39**#3351. MR**0242016 (39:3351)****[13]**-,*A general theorem on the convergence of operator semigroups*, Trans. Amer. Math. Soc.**148**(1970), 23-32. MR**41**#867. MR**0256210 (41:867)****[14]**-,*A limit theorem for perturbed operator semi-groups with applications to random evolutions*, J. Functional Analysis**12**(1973), 55-67. MR**0365224 (51:1477)****[15]**M. A. Pinsky,*Multiplicative operator functionals of a Markov process*, Bull. Amer. Math. Soc.**77**(1971), 377-380. MR**45**#7818. MR**0298769 (45:7818)****[16]**-,*Multiplicative operator functional and their asymptotic properties*, Advances in Probability, Vol. III, Marcel Dekker, New York (to appear). MR**0368182 (51:4423)****[17]**A. Sommerfeld,*Mechanics. Lectures on theoretical physics*. Vol. 1, Translated from the 4th German edition; Academic Press, New York, 1952. MR**14**, 419.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60J75,
47D05

Retrieve articles in all journals with MSC: 60J75, 47D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0362521-9

Keywords:
Perturbation,
random evolution,
Markov process,
operator semigroup,
multiplicative operator functional,
central limit theorem,
stochastic initial value problem,
approximation of physical Brownian motion

Article copyright:
© Copyright 1974
American Mathematical Society