Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Semigroups of operators on locally convex spaces


Author: V. A. Babalola
Journal: Trans. Amer. Math. Soc. 199 (1974), 163-179
MSC: Primary 47D05
DOI: https://doi.org/10.1090/S0002-9947-1974-0383142-8
MathSciNet review: 0383142
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a complex Hausdorff locally convex topological linear space and $ L(X)$ the family of all continuous linear operators on $ X$. This paper discusses the generation and perturbation theory for $ {C_0}$ semigroups $ \{ S(\xi ):\xi \geqslant 0\} \subset L(X)$ such that for each continuous seminorm $ p$ on $ X$ there exist a positive number $ {\sigma _p}$ and a continuous seminorm $ q$ on $ X$ with $ p(S(\xi )x) \leqslant {e^{^\sigma {p^\xi }}}q(x)$ for all $ \xi \geqslant 0$ and $ x \in X$.

These semigroups are studied by means of a realization of $ X$ as a projective limit of Banach spaces, using certain naturally-defined operators and $ {C_0}$ semigroups on these Banach spaces to connect the present results to the classical Hille-Yosida-Phillips theory.


References [Enhancements On Off] (What's this?)

  • [1] V. A. Babalola, Perturbation theory for semigroups of operators on locally convex topological spaces, Ph. D. Thesis, University of Ibadan, Nigeria, 1971.
  • [2] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [3] H. Komatsu, Semi-groups of operators in locally convex spaces, J. Math. Soc. Japan 16 (1964), 230-262. MR 32 #368. MR 0182886 (32:368)
  • [4] T. Kômura, Semigroups of operators in locally convex spaces, J. Functional Analysis 2 (1968), 258-296. MR 38 #2634. MR 0234317 (38:2634)
  • [5] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. No. 11 (1952). MR 14, 482. MR 0051444 (14:482a)
  • [6] I. Miyadera, Semi-groups of operators in Fréchet space and applications to partial differential equations, Tôhoku Math. J. (2) 11 (1959), 162-183. MR 21 #7445. MR 0108731 (21:7445)
  • [7] R. T. Moore, Banach algebras of operators on locally convex spaces, Bull. Amer. Math. Soc. 75 (1969), 68-73. MR 38 #5018. MR 0236723 (38:5018)
  • [8] -, Generation of equicontinuous semigroups by hermitian and sectorial operators. I, II, Bull. Amer. Math. Soc. 77 (1971), 224-229, 368-373. MR 43 #3846a,b. MR 0278114 (43:3846a)
  • [9] S. Ōuchi, Semigroups of operators in locally convex spaces, J. Math. Soc. Japan 25 (1973), 265-276.
  • [10] L. Schwartz, Lectures on mixed problems in partial differential equations and the representation of semigroups, Tata Inst. Fund. Research, Bombay, India, 1958.
  • [11] -, Théorie des distributions. II, Hermann, Paris, 1959.
  • [12] L. Waelbroeck, Les semi-groupes différentiables, Deuxième Colloq. l'Anal. Fonct., Centre Belge Recherches Math., Librairie Universitaire, Louvain, 1964, pp. 97-103. MR 32 #1569. MR 0184095 (32:1569)
  • [13] K. Yosida, Functional analysis, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, New York, 1971.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0383142-8
Keywords: One-parameter $ {C_0}$ semigroups, infinitesimal generator, semigroup generation, compartmentalized operators, $ {L_\mathcal{A}}(X)$-operators, projective limit operators, generator-perturbation by $ {L_\mathcal{A}}(X)$-operators, Hille-Yosida-Phillips theorem
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society