Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Modules over coproducts of rings


Author: George M. Bergman
Journal: Trans. Amer. Math. Soc. 200 (1974), 1-32
MSC: Primary 16A64
DOI: https://doi.org/10.1090/S0002-9947-1974-0357502-5
MathSciNet review: 0357502
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {R_0}$ be a skew field, or more generally, a finite product of full matrix rings over skew fields. Let $ {({R_\lambda })_{\lambda \in \Lambda }}$ be a family of faithful $ {R_0}$rings (associative unitary rings containing $ {R_0}$) and let $ R$ denote the coproduct ("free product") of the $ {R_\lambda }$ as $ {R_0}$-rings. An easy way to obtain an $ R$-module $ M$ is to choose for each $ \lambda \in \Lambda \cup \{ 0\} $ an $ {R_\lambda }$-module $ {M_\lambda }$, and put $ M = \oplus {M_\lambda }{ \otimes _{{R_\lambda }}}R$. Such an $ M$ will be called a ``standard'' $ R$-module. (Note that these include the free $ R$-modules.)

We obtain results on the structure of standard $ R$-modules and homomorphisms between them, and hence on the homological properties of $ R$. In particular:

(1) Every submodule of a standard module is isomorphic to a standard module.

(2) If $ M$ and $ N$ are standard modules, we obtain simple criteria, in terms of the original modules $ {M_\lambda },{N_\lambda }$, for $ N$ to be a homomorphic image of $ M$, respectively isomorphic to a direct summand of $ M$, respectively isomorphic to $ M$.

(3) We find that r gl$ \dim R = {\sup _\Lambda }($r gl$ \dim {R_\lambda })$ if this is > 0, and is 0 or 1 in the remaining case.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Algebraic $ K$-theory, Benjamin, New York, 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [2] G. M. Bergman, Hereditarily and cohereditarily projective modules, Ring Theory (Proc. Sympos., Park City, March 1971), Academic Press, New York, 1972, pp. 20-62. MR 0393124 (52:13934)
  • [3] -, Coproducts and some universal ring contructions, Trans. Amer. Math. Soc. 200 (1974), 33-87. MR 0357503 (50:9971)
  • [4] -, The diamond lemma in ring theory (to appear).
  • [5] G. M. Bergman and P. M. Cohn, The centres of $ 2$-firs and hereditary rings, Proc. London Math. Soc. (3) 23 (1971), 83-98. MR 45 #294. MR 0291200 (45:294)
  • [6] Sylvain Cappell, (personal communication).
  • [7] P. M. Cohn, Morita equivalence and duality, Queen Mary College Mathematics Notes, Queen Mary College, London, 1969. MR 41 #3530.
  • [8] -, On the free product of associative rings. I, Math. Z. 71 (1959), 380-398. MR 21 #5648. MR 0106918 (21:5648)
  • [9] -, On the free product of associative rings. II. The case of (skew) fields, Math. Z. 73 (1960), 433-456. MR 22 #4747. MR 0113916 (22:4747)
  • [10] -, Quadratic extension of skew fields, Proc. London Math. Soc. (3) 11 (1961), 531-556. MR 25 #101. MR 0136633 (25:101)
  • [11] -, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18-30. MR 22 #9514; errata, 22, 2547. MR 0118743 (22:9514)
  • [12] -, Rings with weak algorithm, Trans. Amer. Math. Soc. 109 (1963), 332-356. MR 27 #3657. MR 0153696 (27:3657)
  • [13] -, Universal algebra, Harper and Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
  • [14] -, On the free product of associative rings. III, J. Algebra 8 (1968), 376-383; correction, ibid. 10 (1968), 123. MR 36 #5170; 37 #4121. MR 0222118 (36:5170)
  • [15] -, Dependence in rings. II. The dependence number, Trans. Amer. Math. Soc. 135 (1969), 267-279. MR 43 #4848. MR 0279122 (43:4848)
  • [16] -, Free rings and their relations, Academic Press, New York, 1971. MR 0371938 (51:8155)
  • [17] -, Euclid's elements, 2nd ed., Dover, New York, 1956. MR 17, 814.
  • [18] Peter Freyd, Algebra valued functors in general and tensor products in particular, Colloq. Math. 14 (1966), 89-106. MR 33 #4116. MR 0195920 (33:4116)
  • [19] I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, Ill., 1969. MR 42 #4345. MR 0269449 (42:4345)
  • [20] J. C. Robson and Lance W. Small, Hereditary prime P. I. rings are classical hereditary orders, J. London Math. Soc. (to appear). MR 0349743 (50:2236)
  • [21] T. H. M. Smits, The free product of a quadratic number field and a semi-field, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 145-159. MR 39 #5631. MR 0244316 (39:5631)
  • [22] J. R. Stallings, Whitehead torsion of free products, Ann. of Math. (2) 82 (1965), 354-363. MR 31 #3518. MR 0179270 (31:3518)
  • [23] S. Stevin, Arithmétique (1585) (vol. II of collected works, 1958).
  • [24] A. G. Waterman, General-valued polarities, Doctoral Thesis, Harvard University, Cambridge, Mass., 1971.
  • [25] K. G. Choo, K. Y. Lam and E. Luft, On free products of rings and the coherence property, in Algebraic $ K$-theory. II: ``Classical'' algebraic $ K$-theory and connections with arithmetic, H. Bass (editor), Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin, 1973, pp. 135-143. MR 0360707 (50:13154)
  • [26] W. Dicks, Mayer- Vietoris presentations over coproducts of rings (to appear).
  • [27] R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650-665. MR 13, 819. MR 0047046 (13:819b)
  • [28] J.-P. Serre, Cohomologie des groupes discrètes, in Prospects in Mathematics, Ann. of Math. Studies, no. 70, Princeton Univ. Press, Princeton, N. J., 1971, pp. 77-170. MR 0385006 (52:5876)
  • [29] T. H. M. Smits, On special hereditary orders in quaternion algebras, Delft Progress Report (Delft U. Of Techn., the Netherlands) (F), 1 (1974), 37-40. MR 0506398 (58:22145)
  • [30] R. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610. MR 39 #1521. MR 0240177 (39:1531)
  • [31] F. Waldhausen, ``Whitehead groups of generalized free products", in Algebraic $ K$-theory. II: "Classical'' algebraic $ K$-theory and connections with arithmetic, H. Bass (editor). Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin, 1973, pp. 155-182. MR 0370576 (51:6803)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A64

Retrieve articles in all journals with MSC: 16A64


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0357502-5
Keywords: Coproduct (or ``free product") of rings, category of $ R$-modules, global dimension
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society